

    
      
          
            
  
Welcome to BACpypes

_This documentation needs help!_

BACpypes library for building BACnet applications using Python.  Installation
is easy, just:

$ sudo easy_install bacpypes
or
$ sudo pip install bacpypes





You will be installing the latest released version from PyPI (the Python Packages Index),
located at pypi.python.org


Note

You can also check out the latest version from GitHub:

$ git clone https://github.com/JoelBender/bacpypes.git





And then use the setup utility to install it:

$ cd bacpypes
$ python setup.py install






  
    

    Getting Started
    

    
 
  

    
      
          
            
  
Getting Started

Ah, so you are interested in getting started with BACnet and Python.  Welcome
to BACpypes, I hope you enjoy your journey.  This tutorial starts with
just enough of the basics of BACnet to get a workstation communicating with
another device.  We will cover installing the library, downloading and
configuring the samples applications.


Basic Assumptions

I will assume you are a software developer and it is your job to communicate
with a device from another company that uses BACnet.  Your employer has
given you a test device and purchased a copy of the BACnet standard.  I will
need…


	a development workstation running some flavor of Linux or Windows, complete with
the latest version of Python (2.7 or >3.4) and
setup tools [https://pypi.python.org/pypi/setuptools#unix-based-systems-including-mac-os-x].


	a small Ethernet hub into which you can plug both your workstation and your
mysterious BACnet device, so you won’t be distracted by lots of other network traffic.


	a BACnetIP/BACnet-MSTP Router if your mysterious device is an MSTP device (BACpypes is
actually BACnet/IP software)


	if you are running on Windows, installing Python may be a challenge. Some
Python packages make your life easier by including the core Python plus
many other data processing toolkits, so have a look at Continuum Analytics
Anaconda [https://www.continuum.io/downloads] or Enthought
Canopy [https://www.enthought.com/products/canopy/].




Before getting this test environment set up and while you are still connected
to the internet, install the BACpypes library:

$ sudo easy_install bacpypes





or:

$ sudo pip install bacpypes





And while you are at it, get a copy of the BACpypes project from GitHub.  It
contains the library source code, sample code, and this documentation.  Install
the Git [https://en.wikipedia.org/wiki/Git] software from
here [https://git-scm.com/downloads], then make a local copy of the
repository by cloning it:

$ git clone https://github.com/JoelBender/bacpypes.git





No protocol analysis workbench would be complete without an installed
copy of Wireshark [http://www.wireshark.org/]:

$ sudo apt-get install wireshark





or if you use Windows, download it here [https://www.wireshark.org/download.html].


Caution

Don’t forget to turn off your firewall before beginning to play
with BACpypes! It will prevent you from hours of researches when
your code won’t work as it should!


  
    

    Running BACpypes Applications
    

    
 
  

    
      
          
            
  
Running BACpypes Applications

All BACpypes sample applications have the same basic set of command line
options so it is easy to move between applications, turn debugging on and
and use different configurations.  There may be additional options and
command parameters than just the ones described in this section.


Getting Help

Whatever the command line parameters and additional options might be for
an application, you can start with help:

$ python samples/WhoIsIAm.py --help
usage: WhoIsIAm.py [-h] [--buggers] [--debug [DEBUG [DEBUG ...]]] [--color] [--ini INI]

This application presents a 'console' prompt to the user asking for Who-Is and
I-Am commands which create the related APDUs, then lines up the corresponding
I-Am for incoming traffic and prints out the contents.

optional arguments:
  -h, --help            show this help message and exit
  --buggers             list the debugging logger names
  --debug [DEBUG [ DEBUG ... ]]
        DEBUG ::= debugger [ : fileName [ : maxBytes [ : backupCount ]]]
                        add console log handler to each debugging logger
  --color               use ANSI CSI color codes
  --ini INI             device object configuration file







Listing Debugging Loggers

The BACpypes library and sample applications make extensive use of the
built-in logging module in Python.  Every module in the library, along
with every class and exported function, has a logging object associated
with it.  By attaching a log handler to a logger, the log handler is given
a chance to output the progress of the application.

Because BACpypes modules are deeply interconnected, dumping a complete list
of all of the logger names is a long list.  Start out focusing on the
components of the WhoIsIAm.py application:

$ python samples/WhoIsIAm.py --buggers | grep __main__
__main__
__main__.WhoIsIAmApplication
__main__.WhoIsIAmConsoleCmd





In this sample, the entire application is called __main__ and it defines
two classes.



Debugging a Module

Telling the application to debug a module is simple:

$ python WhoIsIAm.py --debug __main__
DEBUG:__main__:initialization
DEBUG:__main__:    - args: Namespace(buggers=False, debug=['__main__'], ini=<class 'bacpypes.consolelogging.ini'>)
DEBUG:__main__.WhoIsIAmApplication:__init__ (<bacpypes.app.LocalDeviceObject object at 0xb6dd98cc>, '128.253.109.40/24:47808')
DEBUG:__main__:running
>





The output is the severity code of the logger (almost always DEBUG), the name
of the module, class, or function, then some message about the progress of the
application.  From the output above you can see the application initializing,
setting the args variable, creating an instance of the WhoIsIAmApplication class
(with some parameters), and then declaring itself - running.



Debugging a Class

Debugging all of the classes and functions can generate a lot of output,
so it is useful to focus on a specific function or class:

$ python samples/WhoIsIAm.py --debug __main__.WhoIsIAmApplication
DEBUG:__main__.WhoIsIAmApplication:__init__ (<bacpypes.app.LocalDeviceObject object at 0x9bca8ac>, '128.253.109.40/24:47808')
>





The same method is used to debug the activity of a BACpypes module, for
example, there is a class called UDPActor in the UDP module:

$ python samples/WhoIsIAm.py --ini BAC0.ini --debug bacpypes.udp.UDPActor
> DEBUG:bacpypes.udp.UDPActor:__init__ <bacpypes.udp.UDPDirector 128.253.109.255:47808 at 0xb6d40d6c> ('128.253.109.254', 47808)
DEBUG:bacpypes.udp.UDPActor:response <bacpypes.comm.PDU object at 0xb6d433cc>
    <bacpypes.comm.PDU object at 0xb6d433cc>
        pduSource = ('128.253.109.254', 47808)
        pduData = x'81.04.00.37.0A.10.6D.45.BA.C0.01.28.FF.FF.00.00.B6.01.05.FD...'





In this sample, an instance of a UDPActor is created and then its response
function is called with an instance of a PDU as a parameter.  Following
the function invocation description, the debugging output continues with the
contents of the PDU.  Notice, the protocol data is printed as a hex
encoded string (and restricted to just the first 20 bytes of the message).

You can debug a function just as easily.  Specify as many different
combinations of logger names as necessary.  Note, you cannot debug a
specific function within a class.



Sending Debug Log to a file

The current –debug command line option takes a list of named debugging access
points and attaches a StreamHandler which sends the output to sys.stderr.
There is a way to send the debugging output to a
RotatingFileHandler by providing a file name, and optionally maxBytes and
backupCount. For example, this invocation sends the main application debugging
to standard error and the debugging output of the bacpypes.udp module to the
traffic.txt file:

$ python samples/WhoIsIAm.py --debug __main__ bacpypes.udp:traffic.txt





By default the maxBytes is zero so there is no rotating file, but it can be
provided, for example this limits the file size to 1MB:

$ python samples/WhoIsIAm.py --debug __main__ bacpypes.udp:traffic.txt:1048576





If maxBytes is provided, then by default the backupCount is 10, but it can also
be specified, so this limits the output to one hundred files:

$ python samples/WhoIsIAm.py --debug __main__ bacpypes.udp:traffic.txt:1048576:100






Caution

The traffic.txt file will be saved in the local directory (pwd)


  
    

    Clients and Servers
    

    
 
  

    
      
          
            
  
Clients and Servers

While exploring a library like BACpypes, take full advantage of Python being
an interpreted language with an interactive prompt!  The code for this tutorial
is also available in the Tutorial subdirectory of the repository.

This tutorial will be using comm.Client, comm.Server classes,
and the comm.bind() function, so start out by importing them:

>>> from bacpypes.comm import Client, Server, bind





Since the server needs to do something when it gets a request, it
needs to provide a function to get it:

>>> class MyServer(Server):
...     def indication(self, arg):
...         print('working on', arg)
...         self.response(arg.upper())
...





Now create an instance of this new class and bind the client and server together:

>>> c = Client()
>>> s = MyServer()
>>> bind(c, s)





This only solves the downstream part of the problem, as you can see:

>>> c.request('hi')
('working on ', 'hi')
Traceback....
....
NotImplementedError: confirmation must be overridden





So now we create a custom client class that does something with the response:

>>> class MyClient(Client):
...     def confirmation(self, pdu):
...         print('thanks for the ', pdu)
...





Create an instance of it, bind the client and server together and test it:

>>> c = MyClient()
>>> bind(c, s)
>>> c.request('hi')
('working on ', 'hi')
('thanks for ', 'HI')





Success!




          

      

      

    

  

  
    

    Stacking with Debug
    

    
 
  

    
      
          
            
  
Stacking with Debug

This tutorial uses the same comm.Client, comm.Server classes
from the previous one, so continuing on from previous tutorial, all we need is
to import the class:comm.Debug:

>>> from bacpypes.comm import Debug





Because there could be lots of Debug instances, it could be confusing if you
didn’t know which instance was generating the output.  So initialize the debug
instance with a name:

>>> d = Debug("middle")





As you can guess, this is going to go into the middle of a stack of
objects.  The top of the stack is a client, then bottom of a stack is a
server.  When messages are flowing from clients to servers they are called
downstream messages, and when they flow from server to client they
are upstream messages.

The comm.bind() function takes an arbitrary number of objects.  It
assumes that the first one will always be a client, the last one is a server,
and the objects in the middle are hybrids which can be
bound with the client to its left, and to the server on its right:

>>> bind(c, d, s)





Now when the client generates a request, rather than the message being sent
to the MyServer instance, it is sent to the debugging instance, which
prints out that it received the message:

>>> c.request('hi')
Debug(middle).indication
    - args[0]: hi





The debugging instance then forwards the message to the server, which prints
its message.  Completeing the requests downstream journey.:

working on hi





The server then generates a reply.  The reply moves upstream from the server,
through the debugging instance, this time as a confirmation:

Debug(middle).confirmation
    - args[0]: HI





Which is then forwarded upstream to the client:

thanks for the HI





This demonstrates how requests first move downstream from client to server; then
cause the generation of replies that move upstream from server to client; and how the
debug instance in the middle sees the messages moving both ways.

With clearly defined “envelopes” of protocol data, matching the combination of
clients and servers into layers can provide a clear separation of functionality
in a protocol stack.




          

      

      

    

  

  
    

    Protocol Data Units
    

    
 
  

    
      
          
            
  
Protocol Data Units

According to Wikipedia [http://en.wikipedia.org/wiki/Protocol_data_unit] a
Protocol Data Unit (PDU) is


Information that is delivered as a unit among peer entities of a network
and that may contain control information, address information, or data.




BACpypes uses a slight variation of this definition in that it bundles the
address information with the control information.  It considers addressing as
part of how the data should be delivered, along with other concepts like how
important the PDU data is relative to other PDUs.

The basic components of a PDU are the comm.PCI and
comm.PDUData classes which are then bundled together to form the
comm.PDU class.

All of the protocol interpreters written in the course of
developing BACpypes have a concept of source and
destination.  The comm.PCI defines only two attributes, pduSource
and pduDestination.


Note

Master/slave networks, are an exception.  Messages sent by the master, contain
only the destination (the source is implicit).  Messages returned by the slaves
have no addressing (both the source, and destination are implicit).


  
    

    Addressing
    

    
 
  

    
      
          
            
  
Addressing

BACnet addresses come in five delicious flavors:


	local station

	A message addressed to one device on the same network as the originator.



	local broadcast

	A message addressed to all devices or nodes on the same network as the originator.



	remote station

	A message addressed to one device on a different network than the originator.



	remote broadcast

	A message addressed to all devices or nodes on a different network than the originator.



	global broadcast

	A message addressed to all devices or nodes on all networks known any device on any network.





BACpypes address objects are used as the source and destination for PDUs and
are also keys to dictionaries for looking up device in information and
organizing requests and responses with devices.


Building an Address

The Address class other related classes are in the pdu module.


Local Stations

The Address class is the base class from which the other classes are derived,
but for this tutorial, we’ll start with the simplest:

>>> from bacpypes.pdu import LocalStation





Local station addresses are one or more octets of binary data.  For the
simplest networks they are a single octet, for Ethernet and BACnet/IP they
are six octets long.  There is no restriction on the length of an address in
BACpypes.

A local station address is contructed by passing the octet string as bytes or
a byte array, and their string representation is hex notation:

>>> addr1 = Address(b'123456')
>>> print(addr1)
0x313233343536





For local stations on simple networks the constructor will accept unsigned
integers with the simple string output:

>>> addr2 = Address(12)
>>> print(addr2)
12





The underlying components of the address are always byte strings:

>>> addr1.addrAddr
b'123456'
>>> addr1.addrAddr
b'\x01'





When the byte string is six octets long and the next to last octet is 0xBA and
the last octet is in the range 0xC0 to 0xCF, the string output and repr value
will be presented as an IPv4 address:

>>> LocalStation(b'\1\2\3\4\xba\xc0')
<LocalStation 1.2.3.4>





and it will include the port number if it is not the standard port:

>>> LocalStation(b'\1\2\3\4\xba\xc3')
<LocalStation 1.2.3.4:47811>







Local Broadcast

The local broadcast address is used in the destination of a PDU that is to be
sent to all of the devices on a network, and if the network layer can detect
if it received a PDU as the result of another station broadcasting it.  There
are no parameters for constructing one:

>>> from bacpypes.pdu import LocalBroadcast
>>> print(LocalBroadcast())
*





The string output represents any address.



Remote Station

A remote station address is used in BACnet networking when the source and/or
destination is on a network other than the one considered local.  The first
parameter is the network number, which must be a valid BACnet network number,
and the second parameter is a byte string or unsigned integer like the local
station:

>>> from bacpypes.pdu import RemoteStation
>>> print(RemoteStation(15, 75))
15:75
>>> print(RemoteStation(15, b'123456'))
15:0x313233343536





The string output is the network number and address separated by a colon.



Remote Broadcast

A remote broadcast station is used as a destination address when sending a PDU
to all of the devices on a remote network.  The only constructor parameter is
the network number, which must be a valid BACnet network number:

>>> from bacpypes.pdu import RemoteBroadcast
>>> print(RemoteBroadcast(17))
17:*





The string output is the network number number, a colon, and an asterisk for
any address.



GlobalBroadcast

The global broadcast address is used to send PDUs to all devices.  It has no
constructor parameters:

>>> from bacpypes.pdu import GlobalBroadcast
>>> print(GlobalBroadcast())
*:*





The string output is an asterisk for any network, a colon, and an asterisk for
and address.




Address Parsing

The basic Address class can parse the string form of all of the address types
and a few more for older applications and notation that has appeared in
other tutorials.


Note

The Address class cannot “morph” into an instance of one of its subclasses
so to determine what kind of address it is check the addrType attribute.


  
    

    Command Shell
    

    
 
  

    
      
          
            
  
Command Shell

Debugging small, short lived BACpypes applications is fairly simple with the
abillity to attach debug handlers to specific components of a stack when it
starts, and then reproducing whatever situation caused the mis-behaviour.

For longer running applications like gateways it might take some time before
a scenario is ready, in which case it is advantageous to start and stop the debugging
output, without stopping the application.

For some debugging scenarios it is beneficial to force some values into the
stack, or delete some values and see how the application performs.  For example,
perhaps deleting a routing path associated with a network.

Python has a cmd [http://wiki.python.org/moin/CmdModule] module that makes
it easy to embed a command line interpreter in an application.  BACpypes
extends this interpreter with some commands to assist debugging and runs
the interpreter in a separate thread so it does not interfere with the BACpypes
core.run() functionality.


Application Additions

Adding the console command shell is as simple as importing it:

from bacpypes.consolecmd import ConsoleCmd





And creating an instance:

# console
ConsoleCmd()





In addition to the other command line options that are typically included in
BACpypes applications, this can be wrapped:

if '--console' in sys.argv:
    ConsoleCmd()







Command Recall

The BACpypes command line interpreter maintains a history (text file)
of the commands executed, which it reloads upon startup.
Pressing the previous command keyboard shortcut (up-arrow key)
recalls previous commands so they can be executed again.



Basic Commands

All of the commands supported are listed in the consolecmd documentation.
The simplest way to learn the commands is to try them:

$ python Tutorial/SampleConsoleCmd.py
> hi
*** Unknown syntax: hi





There is some help:

> help

Documented commands (type help <topic>):
========================================
EOF  buggers  bugin  bugout  exit  gc  help  shell





And getting a list of the buggers:

> buggers
no handlers
  __main__
  bacpypes
  bacpypes.apdu
  bacpypes.apdu.APCI
  ...
  bacpypes.vlan.Network
  bacpypes.vlan.Node





Attaching a debugger:

> bugin bacpypes.task.OneShotTask
handler to bacpypes.task.OneShotTask added





Then removing it later:

> bugout bacpypes.task.OneShotTask
handler to bacpypes.task.OneShotTask removed





And finally exiting the application:

> exit
Exiting...







Adding Commands

Adding additional commands is as simple as providing an additional function.
Add these lines to SampleConsoleCmd.py:

class SampleConsoleCmd(ConsoleCmd):

    def do_something(self, arg):
        """something <arg> - do something"""
        print("do something", arg)





The ConsoleCmd will trap a help request help something into printing out
the documnetation string.:

> help

Documented commands (type help <topic>):
========================================
EOF  buggers  bugin  bugout  exit  gc  help  nothing  shell  **something**

> help something
something <arg> - do something
>







Example Cache Commands

Add these functions to SampleConsoleCmd.py.  The concept is to force values into an
application cache, delete them, and dump the cache.  First, setting values
is a set command:

class SampleConsoleCmd(ConsoleCmd):

    my_cache= {}

    def do_set(self, arg):
        """set <key> <value> - change a cache value"""
        if _debug: SampleConsoleCmd._debug("do_set %r", arg)

        key, value = arg.split()
        self.my_cache[key] = value





Then delete cache entries with a del command:

def do_del(self, arg):
    """del <key> - delete a cache entry"""
    if _debug: SampleConsoleCmd._debug("do_del %r", arg)

    try:
        del self.my_cache[arg]
    except:
        print(arg, "not in cache")





And to verify, dump the cache:

def do_dump(self, arg):
    """dump - nicely print the cache"""
    if _debug: SampleConsoleCmd._debug("do_dump %r", arg)
    print(self.my_cache)





And when the sample application is run, note the new commands
show up in the help list:

$ python Tutorial/SampleConsoleCmd.py
> help

Documented commands (type help <topic>):
========================================
EOF      bugin   **del**   exit  help     **set**    something
buggers  bugout  **dump**  gc    nothing  shell





You can get help with the new commands:

> help set
set <key> <value> - change a cache value





Lets use these new commands to add some items to the cache and dump it out:

> set x 12
> set y 13
> dump
{'x': '12', 'y': '13'}





Now add a debugger to the main application, which can generate a lot output
for most applications, but this one is simple:

> bugin __main__
handler to __main__ added





Now we’ll get some debug output when the cache entry is deleted:

> del x
DEBUG:__main__.SampleConsoleCmd:do_del 'x'





We can see a list of buggers and which ones have a debugger attached:

> buggers __main__
handlers: __main__
* __main__
  __main__.SampleApplication
  __main__.SampleConsoleCmd





Check the contents of the cache:

> dump
DEBUG:__main__.SampleConsoleCmd:do_dump ''
{'y': '13'}





All done:

> exit
Exiting...









          

      

      

    

  

  
    

    Controllers and IOCB
    

    
 
  

    
      
          
            
  
Controllers and IOCB

The IO Control Block (IOCB) is an object that holds the parameters for some
kind of operation or function and a place for the result.  The IOController
processes the IOCBs it is given and returns the IOCB back to the caller.

For this tutorial section, import the IOCB and IOController:

>>> from bacpypes.iocb import IOCB, IOController






Building an IOCB

Build an IOCB with some arguments and keyword arguments:

>>> iocb = IOCB(1, 2, a=3)





The parameters are kept for processing:

>>> iocb.args
(1, 2)
>>> iocb.kwargs
{'a': 3}







Make a Controller

Now we need a controller to process this request.  This controller is just
going to add and multiply the arguments together:

class SomeController(IOController):

    def process_io(self, iocb):
        self.complete_io(iocb, iocb.args[0] + iocb.args[1] * iocb.kwargs['a'])





Now create an instance of the controller and pass it the request:

>>> some_controller = SomeController()
>>> some_controller.request_io(iocb)





First, you’ll notice that request_io() was called rather than the processing
function directly.  This intermediate layer between the caller of the service
and the thing providing the service can be detached from each other in a
variety of different ways.

For example, there are some types of controllers that can only process one
request at a time and these are derived from IOQController.  If the application
layer requests IOCB processing faster than the controller can manage (perhaps
because it is waiting for some networking functions) the requests will be queued.

In other examples, the application making the request is in a different process
or on a different machine, so the request_io() function builds a remote
procedure call wrapper around the request and manages the response.  This is
similar to an HTTP proxy server.

Similarly, inside the controller it calls self.complete_io() so if there is
some wrapper functionality the code inside the process_io() function doesn’t
need to worry about it.



Check the Result

There are a few ways to check to see if an IOCB has been processed.  Every
IOCB has an Event from the threading built in module, so the application
can check to see if the event is set:

>>> iocb.ioComplete
<threading._Event object at 0x101349590>
>>> iocb.ioComplete.is_set()
True





There is also an IOCB state which has one of a collection of enumerated values:

>>> import bacpypes
>>> iocb.ioState == bacpypes.iocb.COMPLETED
True





And the state could also be aborted:

>>> iocb.ioState == bacpypes.iocb.ABORTED
False





Almost all controllers return some kind of information back to the requestor
in the form of some data.  In this example, it’s just a number:

>>> iocb.ioResponse
7





But we can provide some invalid combination of arguments and the exception
will show up in the ioError:

>>> iocb = IOCB(1, 2)
>>> some_controller.request_io(iocb)
>>> iocb.ioError
KeyError('a',)





The types of results and errors depend on the controller.



Getting a Callback

When a controller completes the processing of a request, the IOCB can contain
one or more functions to be called.  First, define a callback function:

def call_me(iocb):
    print("call me, %r or %r" % (iocb.ioResponse, iocb.ioError))





Now create a request and add the callback function:

>>> iocb = IOCB(1, 2, a=10)
>>> iocb.add_callback(call_me)





Pass the IOCB to the controller and the callback function is called:

>>> some_controller.request_io(iocb)
call me, 21 or None







Threading

The IOCB module is thread safe, but the IOController derived classes may
not be.  The thread initiating the request to the controller may simply
wait for the completion event to be set:

>>> some_controller.request_io(iocb)
>>> iocb.ioComplete.wait()





But for this to work correctly, the IOController must be running in a
separate thread, or there won’t be any way for the event to be set.

If the iocb has callback functions, they will be executed in the thread
context of the controller.





          

      

      

    

  

  
    

    Capabilities
    

    
 
  

    
      
          
            
  
Capabilities

The capabilty module is used to mix together classes that provide both
separate and overlapping functionality.  The original design was motivated
by a component architecture where collections of components that needed to be
mixed together were specified outside the application in a database.

The sample applications in this section are available in tutorial folder.
Note that you can also find them in the unit test folder as they are part of the
test suites.

Start out importing the classes in the module:

>>> from bacpypes.capability import Capability, Collector






Transforming Data

Assume that the application needs to transform data in a variety of different
ways, but the exact order of those functions isn’t specified, but all of the
transformation functions have the same signature.

First, create a class that is going to be the foundation of the transformation
process:

class BaseCollector(Collector):

    def transform(self, value):
        for fn in self.capability_functions('transform'):
            value = fn(self, value)

        return value





If there are no other classes mixed in, the transform() function doesn’t
do anything:

>>> some_transformer = BaseCollector()
>>> some_transformer.transform(10)
10







Adding a Transformation

Create a Capability derived class that transforms the value slightly:

class PlusOne(Capability):

    def transform(self, value):
        return value + 1





Now create a new class that mixes in the base collector:

class ExampleOne(BaseCollector, PlusOne):
    pass





And our transform function incorporates the new behavior:

>>> some_transformer = ExampleOne()
>>> some_transformer.transform(10)
11







Add Another Transformation

Here is a different transformation class:

class TimesTen(Capability):

    def transform(self, value):
        return value * 10





And the new class works as intended:

class ExampleTwo(BaseCollector, TimesTen):
    pass

>>> some_transformer = ExampleTwo()
>>> some_transformer.transform(10)
100





And the classes can be mixed in together:

class ExampleThree(BaseCollector, PlusOne, TimesTen):
    pass

>>> some_transformer = ExampleThree()
>>> some_transformer.transform(10)
110





The order of the classes makes a difference:

class ExampleFour(BaseCollector, TimesTen, PlusOne):
    pass

>>> some_transformer = ExampleFour()
>>> some_transformer.transform(10)
101









          

      

      

    

  

  
    

    Version 0.14.1 to 0.15.0
    

    
 
  

    
      
          
            
  
Version 0.14.1 to 0.15.0

This update contains a significant number of changes to the way the project
code is organized.  This is a guide to updating applications that use BACpypes
to fit the new API.

The guide is divided into a series of sections for each type of change.


LocalDeviceObject

There is a new service sub-package where the functionality to support a
specific type of behavior is in a separate module.  The module names within
the service sub-package are inspired by and very similar to the names of
Clauses 13 through 17.

The bacpypes.service.device module now contains the definition of the
LocalDeviceObject as well as mix-in classes to support Who-Is, I-Am, Who-Has,
and I-Have services.

If your application contained this:

from bacpypes.app import LocalDeviceObject, BIPSimpleApplication





Update it to contain this:

from bacpypes.app import BIPSimpleApplication
from bacpypes.service.device import LocalDeviceObject







Application Subclasses

The Application class in the bacpypes.app module no longer supports
services by default, they are mixed into derived classes as needed.  There
are very few applications that actually took advantage of the AtomicReadFile
and AtomicWriteFile services, so when these were moved to their own
service module bacpypes.service.file it seems natural to move the
implementations of the other services to other modules as well.

Moving this code to separate modules will facilitate BACpypes applications
building additional service modules to mix into the default ones or replace
default implementations with ones more suited to their local application
requirements.

The exception to this is the BIPSimpleApplication, is the most commonly used
derived class from Application and I anticipated that by having it include
WhoIsIAmServices and ReadWritePropertyServices allowed existing applications
to run with fewer changes.

If your application contained this:

class MyApplication(Application):
    ...





And you want to keep the old behavior, replace it with this:

from bacpypes.service.device import WhoIsIAmServices
from bacpypes.service.object import ReadWritePropertyServices

class MyApplication(Application, WhoIsIAmServices, ReadWritePropertyServices):
    ...







Client-only Applications

The Application class no longer requires a value for the localDevice or
localAddress parameters.  BACpypes applications like that omit these
parameters will only be able to initiate confirmed or unconfirmed services that
do not require these objects or values.  They would not be able to respond to
Who-Is requests for example.

Client-only applications are useful when it would be advantageous to avoid the
administrative overhead for configuring something as a device, such as
network analysis applications and very simple trend data gather applications.
They are also useful for BACpypes applications that run in a Docker container
or “in the cloud”.

Sample client-only applications will be forthcoming.



Simplified Requests

Some of the service modules now have additional functions that make it easier
to initiate requests.  For example, in the WhoIsIAmServices class there are
functions for initiating a Who-Is request by a simple function:

def who_is(self, low_limit=None, high_limit=None, address=None):
    ...





Validating the parameters, building the WhoIsRequest PDU and sending it
downstream is all handled by the function.

If your application builds common requests then you can use the new
functions or continue without them.  If there are common requests that you
would like to make and have built into the library your suggestions are
always welcome.





          

      

      

    

  

  
    

    Glossary
    

    
 
  

    
      
          
            
  
Glossary


	upstream

	Something going up a stack from a server to client.



	downstream

	Something going down a stack from a client to a server.



	stack

	A sequence of communication objects organized in a semi-linear sequence
from the application layer at the top to the physical networking layer(s)
at the bottom.



	discoverable

	Something that can be determined using a combination of BACnet objects,
properties and services.  For example, discovering the network topology
by using Who-Is-Router-To-Network, or knowing what objects are defined
in a device by reading the object-list property.








          

      

      

    

  

  
    

    Release Notes
    

    
 
  

    
      
          
            
  
Release Notes

This page contains release notes.


Version 0.13.6

There have been lots of changes in the span between the previous published
version and this one and I haven’t quite figured out how to extract the
relevent content from the git log.  More to come.



Version 0.13.0

This is a big release, with no API changes since the 0.12.1 version, but the
setup now detects which version of Python is running and switches between
source directories: py25, py27, and py34.

There is now a test directory, so in addition to the build and install
options there is test, which uses
nose [https://nose.readthedocs.org/en/latest/] for running the scripts:

$ python setup.py test





If you have more than one version of Python installed on your machine you can
use tox [https://testrun.org/tox/latest/] to run the tests will all of the
supported versions (currently limited to Python2.7 and Python3.4 due to
substantial changes in unittest):

$ tox





At some point there will be a documentation page that decribes the changes
between the distributions, as well as a guide for new applications.



Version 0.12.1


	Add backup-in-progress to the Device Status enumeration
r331 [http://sourceforge.net/p/bacpypes/code/331]


	Correct the restoreFailure in BackupState
r332 [http://sourceforge.net/p/bacpypes/code/332]


	Check for read-only object when writing to a file
r333 [http://sourceforge.net/p/bacpypes/code/333]


	Wrong initial value for no segmentation (old enumeration syntax)
r334 [http://sourceforge.net/p/bacpypes/code/334]


	Wrong parameter
r335 [http://sourceforge.net/p/bacpypes/code/335]


	Missed variable name change
r336 [http://sourceforge.net/p/bacpypes/code/336]


	Mask errors writing the history file like they are when reading
r337 [http://sourceforge.net/p/bacpypes/code/337]


	Make sure that the vendor identifier is provided, and that localDate and
localTime are not
r338 [http://sourceforge.net/p/bacpypes/code/338]


	Add simple string parsing to Date and Time
r339 [http://sourceforge.net/p/bacpypes/code/339]


	Bump the version number, provide more focused classifiers, include release
notes
r340 [http://sourceforge.net/p/bacpypes/code/340]






Version 0.12.0


	Switch from distutils to setuptools to build a wheel
r323 [http://sourceforge.net/p/bacpypes/code/323]


	Updated to use twine to upload after building both an egg and a wheel
r324 [http://sourceforge.net/p/bacpypes/code/324]


	ReallyLongCamelCaseTypo
r325 [http://sourceforge.net/p/bacpypes/code/325]


	The pieces inside the AtomicReadFileACK should not have been context encoded,
but the choice is context encoded
r326 [http://sourceforge.net/p/bacpypes/code/326]


	Additional properties and object types to get closer to 2012 edition
r327 [http://sourceforge.net/p/bacpypes/code/327]


	Additional properties and enumerations
r328 [http://sourceforge.net/p/bacpypes/code/328]


	Replace ‘except X, T:’ with ‘except X as T:’ for more modern code
r329 [http://sourceforge.net/p/bacpypes/code/329]


	Bump the version number and include release notes this time
r330 [http://sourceforge.net/p/bacpypes/code/330]






Version 0.11.0


	Merge the 0.10.6 release
r311 [http://sourceforge.net/p/bacpypes/code/311]


	Examples of a RecurringTask and using that to read property values.
r312 [http://sourceforge.net/p/bacpypes/code/312]


	Minor documentation update, adding –color option
r313 [http://sourceforge.net/p/bacpypes/code/313]


	IP-to-IP router sample
r314 [http://sourceforge.net/p/bacpypes/code/314]


	Additional helper application for decoding UDP packet contents in hex
r315 [http://sourceforge.net/p/bacpypes/code/315]


	The ‘description’ property is optional, by giving it a default value it was
always being created.
r316 [http://sourceforge.net/p/bacpypes/code/316]


	Spelling typo
r317 [http://sourceforge.net/p/bacpypes/code/317]


	Missing enumerations
r318 [http://sourceforge.net/p/bacpypes/code/318]


	WhatIsNetworkNumber and NetworkNumberIs decoding (no other support yet)
r319 [http://sourceforge.net/p/bacpypes/code/319]


	typo
r320 [http://sourceforge.net/p/bacpypes/code/320]


	reStructured text version of readme
r321 [http://sourceforge.net/p/bacpypes/code/321]


	Bump the version number
r322 [http://sourceforge.net/p/bacpypes/code/322]






Version 0.10.6


	Release notes from previous version.
r304 [http://sourceforge.net/p/bacpypes/code/304]


	The accessCredential object type was missing.
r305 [http://sourceforge.net/p/bacpypes/code/305]


	Incorrect number of formatting parameters to match actual parameters, only
appeared as warnings during debugging, but is definitely annoying.
r306 [http://sourceforge.net/p/bacpypes/code/306]


	New ReadRange sample code to assist with a developer question, keep them
coming!
r307 [http://sourceforge.net/p/bacpypes/code/307]


	The ClientCOV components are not supposed to be context encoded.
r308 [http://sourceforge.net/p/bacpypes/code/308]


	A change to make sure that an array property isn’t None (uninitialized) before
attempting to index into it.
r309 [http://sourceforge.net/p/bacpypes/code/309]


	Bump the version number and update these release notes.
r310 [http://sourceforge.net/p/bacpypes/code/310]






Version 0.10.5


	Bill Roberts submitted a patch to clean up an old underscore, and I missed
the edit earlier.  Thanks Bill!
r302 [http://sourceforge.net/p/bacpypes/code/302]


	Bump the version number, release notes to come later.
r303 [http://sourceforge.net/p/bacpypes/code/303]






Version 0.10.4

This version contains bug fixes.


	Some BACneteer had an issue with MultiState Value Objects so I added some
sample code to present one of these on the network so I could check to make
sure the encoding/decoding of property values was working correctly.

There was an issue with constructed data with elements that were arrays,
the elements should have had Python list semantics rather than BACnet array
semantics, so there is some additional checking for this in the
decoding.
r282 [http://sourceforge.net/p/bacpypes/code/282]



	A branch was created for dealing with unicode strings rather than the default
string encoding.  No final decision has been made on this issue, I need more
experience.
r283 [http://sourceforge.net/p/bacpypes/code/283]
r284 [http://sourceforge.net/p/bacpypes/code/284]
r285 [http://sourceforge.net/p/bacpypes/code/285]
r286 [http://sourceforge.net/p/bacpypes/code/286]
r287 [http://sourceforge.net/p/bacpypes/code/287]
r289 [http://sourceforge.net/p/bacpypes/code/289]
r290 [http://sourceforge.net/p/bacpypes/code/290]
r291 [http://sourceforge.net/p/bacpypes/code/291]
r292 [http://sourceforge.net/p/bacpypes/code/292]


	Delete an unecessary import (a.k.a., “flake”).
r288 [http://sourceforge.net/p/bacpypes/code/288]


	Handle the various combinations of present/missing values for the object
identifier and object list keyword arguments to the device object better.
r293 [http://sourceforge.net/p/bacpypes/code/293]


	The Random Analog Value Object sample code used the object identifier keyword
argument in a non-standard way, and I thought this fixed it, but it seems to
have re-introduced some debugging code as well.  This needs investigation.
r294 [http://sourceforge.net/p/bacpypes/code/294]


	For sequences that specify “any atomic value” which is application encoded,
the constructed data decoder presents those values as instances of one
of the subclasses of Atomic rather that presenting them as Any which needs
more work decoding for the BACpypes developer.
r295 [http://sourceforge.net/p/bacpypes/code/295]


	This patch takes advantage of the r295 and applies it to the Schedule Object
and the TimeValue, used in SpecialEvent, used in the exception Schedule.
r296 [http://sourceforge.net/p/bacpypes/code/296]


	In the Read Property sample code, if the value has a debug_contents API
then it is called and this gives a little bit more detailed output.
r297 [http://sourceforge.net/p/bacpypes/code/297]


	New Schedule Object sample code.
r298 [http://sourceforge.net/p/bacpypes/code/298]


	The fileIdentifier parameter of the Atomic Read/Write File services is
application encoded, not context encoded.
r299 [http://sourceforge.net/p/bacpypes/code/299]


	Bill Roberts submitted some patches to clean up element encoding errors,
thank you Bill!
r300 [http://sourceforge.net/p/bacpypes/code/300]


	Bump the version number and release.  Notes to be committed later.
r301 [http://sourceforge.net/p/bacpypes/code/301]






Version 0.10.3

This version contains some enhancements and bug fixes.


	Sangeeth Saravanaraj submitted an enchancement that allows the ConsoleCmd class
to accept stdin and stdout parameters and replaces the print statements with
self.stdout.write calls.  Thank you!
r276 [http://sourceforge.net/p/bacpypes/code/276]


	This is a new filter that looks for Who-Is and I-Am messages related to a specific
device instance number in a pcap file.
r277 [http://sourceforge.net/p/bacpypes/code/277]


	This minor enhancement allows longs in the object type for an object identifier
__init__ parameter rather than just ints.
r278 [http://sourceforge.net/p/bacpypes/code/278]


	Application service access point encode and decoding errors bail out of the effort
rather than raising an error.  There is a very long running application that I have
that would decode an APDU incorrectly every once in a great while, but it was very
difficult to track down.  I think this was actually field device that was adding
additional cruft on the end of a packet and BACpypes would raise an error.  I need
the stack to toss these errant PDUs out as if they never happened.
It would be nice if there was a logging hook that developers could use to track
when this happens.
r279 [http://sourceforge.net/p/bacpypes/code/279]


	This is a pair of sample applications for proprietary object types and proprietary
properties to demonstrate how to extend the core types.
r280 [http://sourceforge.net/p/bacpypes/code/280]


	Bump the version number and update these release notes.
r281 [http://sourceforge.net/p/bacpypes/code/281]






Version 0.10.2

This version contains bug fixes.


	The invokeID for outbound client requests must be unique per server, but can be
the same value for different servers.  I had solved this problem once before in the
sample HTTP server code, but didn’t migrate the code into the core library.  At
some point there was some other code that couldn’t generate more than 255 requests, so
this never got tested.  Other BACneteers are more aggressive!
r272 [http://sourceforge.net/p/bacpypes/code/272]


	The segment count of a confirmed ack is at least one, even if there is no PDU data.
This was solved on the client side (in the client segmentation state machine for seeing
if requests needed to be segmented on the way out) but not on the server side.  This
fixes that bug.
r273 [http://sourceforge.net/p/bacpypes/code/273]


	The ReadPropertyMultipleServer code would see that an object didn’t exist and build an
error response, which was oblitered by the default code at the bottom of the loop so
it was never returned.  Now if any of the read access specifications refers to an object
that doesn’t exist the request will correctly return an error.
r274 [http://sourceforge.net/p/bacpypes/code/274]


	Bump the version number and update these release notes.
r275 [http://sourceforge.net/p/bacpypes/code/275]






Version 0.10.1

This version contains more contributions that should have been included in the previous
release, but I updated the library in a different order than the mailing list.  Sigh.


	The library did not return the correct error for writing to immutable properties.
r269 [http://sourceforge.net/p/bacpypes/code/269]


	The lowerCamelCase for CharacterStringValue objects was incorrect and didn’t match
the enumeration value.
r270 [http://sourceforge.net/p/bacpypes/code/270]


	Bump the version number and update these release notes.
r271 [http://sourceforge.net/p/bacpypes/code/271]






Version 0.10

This version contains updates courtesy of contributions from other BACpypes users, of whom
I am grateful!


	The consolelogging module ConfigArgumentParser inherits from the built-in ArgumentParser
class, but the parse_args didn’t have the same function signature.
r264 [http://sourceforge.net/p/bacpypes/code/264]


	The MultipleReadProperty new sample application has a list of points and it shows how
to put those points into a queue so each one of them can be read sequentially.
r265 [http://sourceforge.net/p/bacpypes/code/265]


	The Read Access and Stream Access choices in the atomic file services were backwards,
stream access is choice zero (0) and record access is one (1).
r266 [http://sourceforge.net/p/bacpypes/code/266]


	In the process of confirming that the file access services were in fact wrong, I decided
to update the sample applications and give them better names.
r267 [http://sourceforge.net/p/bacpypes/code/267]


	Bump the version number and update these release notes.
r268 [http://sourceforge.net/p/bacpypes/code/268]






Version 0.9.5

I have been working more on converting PDU’s into JSON content that can be archived and searched in
MongoDB.


	Simple bug, while I was updated in the __init__ calling chain I got the class name wrong.
r260 [http://sourceforge.net/p/bacpypes/code/260]


	When there is network layer traffic on a port that is not the “local port” it still needs to be
processed by the local NetworkServiceElement.  And trying to debug this problem, there was
no debugger for the NSE!
r261 [http://sourceforge.net/p/bacpypes/code/261]


	As I have been shuffling around JSON-like content in various applications it became harder and
harder to manage if the result of calling dict_content was going to return PCI layer information
(the NPCI, APCI, or BVLCI), or the “data” portion of the packet.  I also took the opportunity to
use simpler names.
r262 [http://sourceforge.net/p/bacpypes/code/262]


	Bump the version number and update these release notes.
r263 [http://sourceforge.net/p/bacpypes/code/263]






Version 0.9.4

This revision is an annouced release.  The combination of r258 [http://sourceforge.net/p/bacpypes/code/258]
and r256 [http://sourceforge.net/p/bacpypes/code/256] makes this important to get out
to the community sooner rather than later.


	The TimeSynchronizationRequest application layer PDUs have their time parameter
application encoded, not context encoded.
r258 [http://sourceforge.net/p/bacpypes/code/258]


	Bump the version number and update these release notes.
r259 [http://sourceforge.net/p/bacpypes/code/259]






Version 0.9.3

This release just has some minor bug fixes, but in order to get a large collection of
applications running quickly it was simpler to make minor release and install it on
other machines.  The version was release to PyPI but never annouced.

Revisions r255 [http://sourceforge.net/p/bacpypes/code/255]
through r257 [http://sourceforge.net/p/bacpypes/code/257].


	A simple copy/paste error from some other sample code.
r255 [http://sourceforge.net/p/bacpypes/code/255]


	When shuffling data around to other applications and databases (like MongoDB) there
are problems with raw string data, a.k.a., octet strings, or in Python3 terms byte
strings.  This is a simple mechanism to make hex strings out of the data portion of
tag data.  This is subject to change to some other format as we get more experience
with data in other applications.
r256 [http://sourceforge.net/p/bacpypes/code/256]


	Remove the “flakes” (modules that were imported but not used).
r257 [http://sourceforge.net/p/bacpypes/code/257]






Version 0.9.2

Apart from the usual bug fixes and small new features, this release changes
almost all of the __init__ functions to use super() rather than
calling the parent class initializer.


New School Initialization

For example, while the old code did
this:

class Foo(Bar):

    def __init__(self):
        Bar.__init__(self)
        self.foo = 12





New the code does this:

class Foo(Bar):

    def __init__(self, *args, **kwargs):
        super(Foo, self).__init__(*args, **kwargs)
        self.foo = 12





If you draw an inheritance tree starting with PDUData at the top and
ending with something like ReadPropertyRequest at the bottom, you will
see lots of branching and merging.  Calling the parent class directly may
lead to the same base class being “initialized” more than once which was
causing all kinds of havoc.

Simply replacing the one with the new wasn’t quite good enough however,
because it could lead to a situation where a keyword arguement needed to be
“consumed” if it existed because it didn’t make sense for the parent class
or any of its parents.  In many cases this works:

class Foo(Bar):

    def __init__(self, foo_arg=None, *args, **kwargs):
        super(Foo, self).__init__(*args, **kwargs)
        self.foo = 12





When the parent class initializer gets called the foo_arg will be a
regular parameter and won’t be in the kwargs that get passed up the
inheritance tree.  However, with Sequence and Choice there is
no knowledge of what the keyword parameters are going to be without going
through the associated element lists.  So those two classes go to great
lengths to divide the kwargs into “mine” and “other”.



New User Data PDU Attribute

I have been working on a fairly complicated application that is a combination
of being a BBMD on multiple networks and router between them.  The twist is
that there are rules that govern what segments of the networks can see each
other.  To manage this, there needed to be a way to attach an object at the bottom
of the stack when a PDU is received and make sure that context information
is maintained all the way up through the stack to the application layer and
then back down again.

To accomplish this there is a pduUserData attribute you can set and as
long as the stack is dealing with that PDU or the derived encoded/decoded
PDUs, that reference is maintained.

Revisions r246 [http://sourceforge.net/p/bacpypes/code/246]
through r254 [http://sourceforge.net/p/bacpypes/code/254].


	The sample HTTP server was using the old syle argument parser
and the old version didn’t have the options leading to confusion.
r246 [http://sourceforge.net/p/bacpypes/code/246]


	Set the ‘reuse’ flag for broadcast sockets.  A BACneteer has
a workstation with two physical adapters connected to the same
LAN with different IP addresses assigned for each one.  Two
BACpypes applications were attempting to bind to the same
broadcast address, this allows that scenerio to work.
r247 [http://sourceforge.net/p/bacpypes/code/247]


	Fix the help string and add a little more error checking to the
ReadPropertyMultiple.py sample application.
r248 [http://sourceforge.net/p/bacpypes/code/248]


	Add the –color option to debugging.  This wraps the output of the
LoggingFormatter with ANSI CSI escape codes so the output from
different log handlers is output in different colors.  When
debugging is turned on for many modules it helps!
r249 [http://sourceforge.net/p/bacpypes/code/249]


	The WriteProperty method now has a ‘’direct’’ parameter, this
fixes the function signatures of the sample applications to include
it.
r250 [http://sourceforge.net/p/bacpypes/code/250]


	Change the __init__ functions to use super(), see explanation
above.
r251 [http://sourceforge.net/p/bacpypes/code/251]


	Bump the minor version number.
r252 [http://sourceforge.net/p/bacpypes/code/252]


	Update the getting started document to include the new color debugging
option.  There should be more explanation of what that means exactly,
along with a link to the Wikipedia color code tables.
r253 [http://sourceforge.net/p/bacpypes/code/253]


	Update these release notes.
r254 [http://sourceforge.net/p/bacpypes/code/254]







Version 0.9.1

Most of this release is just documentation, but it includes some new functionality
for translating PDUs into dictionaries.  The new dict_contents functions will
most likely have some bugs, so consider that API unstable.

Revisions r238 [http://sourceforge.net/p/bacpypes/code/238]
through r245 [http://sourceforge.net/p/bacpypes/code/245].


	For some new users of BACpypes, particularly those that were also new to BACnet,
it can be a struggle getting something to work.  This is the start of a new
documentation section to speed that process along.
r238 [http://sourceforge.net/p/bacpypes/code/238]
r239 [http://sourceforge.net/p/bacpypes/code/239]
r240 [http://sourceforge.net/p/bacpypes/code/240]


	For multithreaded applications it is sometimes handly to override the default
spin value, which is the maximum amount of time that the application should
be stuck in the asyncore.loop() function.  The developer could import the
core module and change the CORE value before calling run(), but that seems
excessively hackish.
r241 [http://sourceforge.net/p/bacpypes/code/241]


	Apparently there should not be a dependancy on setuptools for developers that
want to install the library without it.  In revision r227 [http://sourceforge.net/p/bacpypes/code/227]
I changed the setup.py file, but that broke the release script.  I’m not
completely sure this is correct, but it seems to work.
r242 [http://sourceforge.net/p/bacpypes/code/242]


	This revision includes a new dict_contents() function that encodes PDU content
into a dict-like object (a real dict by default, but the developer can provide
any other class that supports __setitem__).  This is the first step in a long
road to translate PDU data into JSON, then into BSON to be streamed into a
MongoDB database for analysis applications.
r243 [http://sourceforge.net/p/bacpypes/code/243]


	Bump the version number before releasing it.
r244 [http://sourceforge.net/p/bacpypes/code/244]


	Update these release notes.
r245 [http://sourceforge.net/p/bacpypes/code/245]






Version 0.9

There are a number of significant changes in BACpypes in this release, some of which
may break existing code so it is getting a minor release number.  While this project
is getting inexorably closer to a 1.0 release, we’re not there yet.

The biggest change is the addition of a set of derived classes of Property that
match the names of the way properties are described in the standard; OptionalProperty,
ReadableProperty, and WritableProperty.  This takes over from the awkward and
difficult-to-maintain combinations of optional and mutable constructor parameters.
I went through the standard again and matched the class name with the object definition
and it is much cleaner.

This change was brought about by working on the BACowl [http://bacowl.sourceforge.net/]
project where I wanted the generated ontology to more closely match the content of the
standard.  This is the first instance where I’ve used the ontology design to change
application code.

Revisions r227 [http://sourceforge.net/p/bacpypes/code/227]
through r234 [http://sourceforge.net/p/bacpypes/code/234].


	At some point setuptools was replaced with distutils and this needed to change
while I was getting the code working on Windows.
r227 [http://sourceforge.net/p/bacpypes/code/227]


	Added the new property classes and renamed the existing Property class instances.
There are object types that are not complete (not every object type has every property
defined) and these will be cleaned up and added in a minor release in the near future.
r228 [http://sourceforge.net/p/bacpypes/code/228]


	The UDP module had some print statements and a traceback call that sent content to stdout,
errors should go to stderr.
r229 [http://sourceforge.net/p/bacpypes/code/229]


	With the new property classes there needed to be a simpler and cleaner way managing the
__init__ keyword parameters for a LocalDeviceObject.  During testing I had created
objects with no name or object identifier and it seemed like some error checking was
warrented, so that was added to add_object and delete_object.
r230 [http://sourceforge.net/p/bacpypes/code/230]


	This commit is the first pass at changing the way object classes are registered.  There
is now a new vendor_id parameter so that derived classes of a standard object can be
registered.  For example, if vendor Snork has a custom SnorkAnalogInputObject class (derived
from AnalogInputObject of course) then both classes can be registered.

The get_object_class has a cooresponding vendor_id parameter, so if a client
application is looking for the appropriate class, pass the vendorIdentifier property
value from the deivce object of the server and if there isn’t a specific one defined, the
standard class will be returned.

The new and improved registration function would be a lot nicer as a decorator, but optional
named parameters make and interesting twist.  So depending on the combination of parameters
it returns a decorator, which is an interesting twist on recursion.

At some point there will be a tutorial covering just this functionality, and before this
project hits version 1.0, there will be a similar mechanism for vendor defined enumerations,
especially PropertyIdentifier, and this will also follow the BACowl ontology conventions.

This commit also includes a few minor changes like changing the name klass to the
not-so-cute cls, property to propid because the former is a reserved word, and
the dictionary of registered objects from object_types to registered_object_types.
r231 [http://sourceforge.net/p/bacpypes/code/231]



	Simple wrapping of the command line argument interpretation for a sample application.
r232 [http://sourceforge.net/p/bacpypes/code/232]


	The CommandableMixin isn’t appropriate for BinaryValueObject type, so I replaced it
with a DateValueObject.
r233 [http://sourceforge.net/p/bacpypes/code/233]


	I managed to install Sphinx on my Windows laptop and this just added a build script to make
it easier to put in these release notes.
r235 [http://sourceforge.net/p/bacpypes/code/235]


	This adds the relaease notes page and a link to it for documentation, committed so I could
continue working on it from a variety of different places.  I usually wouldn’t make a commit just
for this unless I was working in a branch, but because I’m working in the trunk rather than
using a service like DropBox I decided to let myself get away with it.
r234 [http://sourceforge.net/p/bacpypes/code/234]
r236 [http://sourceforge.net/p/bacpypes/code/236]


	Committed the final version of these notes and bumped the minor version number.
r237 [http://sourceforge.net/p/bacpypes/code/237]






Version 0.8

Placeholder for 0.8 release notes.

Revisions r224 [http://sourceforge.net/p/bacpypes/code/224]
through r226 [http://sourceforge.net/p/bacpypes/code/226].


	Placeholder for comments about revision 224.
r224 [http://sourceforge.net/p/bacpypes/code/224]


	Placeholder for comments about revision 225.
r225 [http://sourceforge.net/p/bacpypes/code/225]


	Bump the minor version number.
r226 [http://sourceforge.net/p/bacpypes/code/226]






Version 0.7.5

Placeholder for 0.8 release notes.

Revisions r217 [http://sourceforge.net/p/bacpypes/code/217]
through r223 [http://sourceforge.net/p/bacpypes/code/223].


	Placeholder for comments about revision 217.
r217 [http://sourceforge.net/p/bacpypes/code/217]


	Placeholder for comments about revision 218.
r218 [http://sourceforge.net/p/bacpypes/code/218]


	Placeholder for comments about revision 219.
r219 [http://sourceforge.net/p/bacpypes/code/219]


	Placeholder for comments about revision 220.
r220 [http://sourceforge.net/p/bacpypes/code/220]


	Placeholder for comments about revision 221.
r221 [http://sourceforge.net/p/bacpypes/code/221]


	Placeholder for comments about revision 222.
r222 [http://sourceforge.net/p/bacpypes/code/222]


	Bump the patch version number.
r223 [http://sourceforge.net/p/bacpypes/code/223]






Version 0.7.4

Lost to the sands of time.





          

      

      

    

  

  
    

    BACpypes Modules
    

    
 
  

    
      
          
            
  
BACpypes Modules


Core



	Core
	Globals

	Functions





	Comm
	Globals

	Functions

	Protocol Data Units

	Protocol Stack Classes

	Application Classes





	BACnet Protocol Data Units
	Addressing

	Extended PCI





	Debugging
	Globals

	Functions

	Function Decorators

	Classes





	Console Logging
	Functions





	Console Command
	Functions

	Classes

	Commands





	Errors
	Classes





	Singleton
	Classes





	Task
	Singleton Task Manager

	Globals

	Functions

	Function Decorators

	Classes





	Event
	Classes











UDP Communications



	UDP
	Classes





	BACnet Virtual Link Layer
	PDU Base Types

	PDU Types





	BACnet Virtual Link Layer Service
	UDP Multiplexing

	Annex H - Tunneling

	Annex J - B/IP











TCP Communications



	TCP
	Client Classes

	Server Classes

	Streaming Packets

	Stream Pickling





	BACnet Streaming Link Layer
	PDU Base Types

	Service Requests

	Device-To-Device Stream

	Router-To-Router Stream

	Proxy-To-Server Stream

	LAN Emulation Stream





	BACnet Streaming Link Layer Service
	Streaming Packets

	User Information

	Connection State

	Service Adapter

	TCP Multiplexing

	Device-to-Device Service

	Router-to-Router Service

	Proxy Service

	LAN Emulation Service











Network Layer



	Network Layer Protocol Data Units
	PDU Base Types

	Service Requests





	Network Layer Service
	Connection State

	Reference Structures

	Network Service





	Virtual LAN







Application Layer



	Primative Data
	Tags

	Atomic Data Types





	Constructed Data
	Elements

	Sequences

	Arrays

	Choice

	Any





	Base Types
	Array

	Bit Strings

	Enumerations

	Structures





	Application Layer PDUs
	Globals

	Functions

	PDU Base Types

	Basic Classes

	Sequence Classes





	Objects
	Globals

	Functions

	Properties

	Objects

	Standard Object Types

	Extended Object Types





	Application
	Device Information

	Base Class

	BACnet/IP Applications

	BACnet/IP Network Application





	Application Service
	Segmentation State Machine

	Client Segmentation State Machine

	Server Segmentation State Machine

	Application Stack











Services



	Service Modules
	Device Services

	Object Services

	File Services





	Change Detection and Reporting
	Detect

	Change of Value (COV) Services











Analysis



	Analysis of PCAP Files
	Functions

	Decoders

	Tracing











Other



	Capability
	Classes

	Functions





	Command Logging

	IO Control Block
	Classes

	Functions













          

      

      

    

  

  
    

    Core
    

    
 
  

    
      
          
            
  
Core

All applications have to have some kind of outer blcok.


Globals


	
core.running

	This is a boolean that the application is running.  It can be turned off
by an application, but the stop() function is usually used.






	
core.taskManager

	This is a reference to the TaskManager instance that is used
to schedule some operation.  There is only one task manager instance in
an application.






	
core.deferredFns

	This is a list of function calls to make after all of the asyncore.loop
processing has completed.  This is a list of (fn, args, kwargs) tuples
that are appended to the list by the deferred() function.






	
core.sleeptime

	This value is used to “sleep” the main thread for a certian amount of
before continuing on to the asyncore loop.  It is used to be friendly
to other threads that may be starved for processing time.  See
enable_sleeping().







Functions


	
core.run(spin=SPIN, sigterm=stop, sigusr1=print_stack)

	
	Parameters:

	
	spin – the amount of time to wait if no tasks are scheduled


	sigterm – a function to call when SIGTERM is signaled, defaults to stop


	sigusr1 – a function to call when SIGUSR1 is signaled, defaults to print_stack








This function is called by a BACpypes application after all of its
initialization is complete.

The spin parameter is the maximum amount of time to wait in the sockets
asyncore loop() function that waits for network activity.  Setting this to
a large value allows the application to consume very few system resources
while there is no network activity.  If the application uses threads,
setting this to a large value will starve the child threads for time.

The sigterm parameter is a function to be installed as a signal handler
for SIGTERM events.  For historical reasons this defaults to the stop()
function so that Ctrl-C in interactive applications will exit the application
rather than raise a KeyboardInterrupt exception.

The sigusr1 parameter is a function to be installed as a signal handler
for SIGUSR1 events.  For historical reasons this defaults to the print_stack()
function so if an application seems to be stuck on waiting for an event
or in a long running loop the developer can trigger a “stack dump”.

The sigterm and sigusr1 parameters must be None when the run() function is
called from a non-main thread.






	
core.stop(*args)

	
	Parameters:

	args – optional signal handler arguments





This function is called to stop a BACpypes application.  It resets the
running boolean value.  This function also installed as a
signal handler responding to the TERM signal so you can stop a background
(deamon) process:

$ kill -TERM 12345










	
core.print_stack(sig, frame)

	
	Parameters:

	
	sig – signal


	frame – stack trace frame













	
core.deferred(fn, *args, **kwargs)

	
	Parameters:

	
	fn – function to call


	args – regular arguments to pass to fn


	kwargs – keyword arguments to pass to fn








This function is called to postpone a function call until after the
asyncore.loop processing has completed.  See run().






	
core.enable_sleeping([stime])

	
	Parameters:

	stime – amount of time to sleep, defaults to one millisecond





BACpypes applications are generally written as a single threaded
application, the stack is not thread safe.  However, applications may
use threads at the application layer and above for other types of work.
This function allows the main thread to sleep for some small amount of
time so that it does not starve child threads of processing time.

When sleeping is enabled, and it only needs to be enabled for multithreaded
applications, it will put a damper on the throughput of the application.









          

      

      

    

  

  
    

    Comm
    

    
 
  

    
      
          
            
  
Comm

All applications have to have some kind of outer blcok.


Globals


	
comm.client_map

	This is …






	
comm.server_map

	This is …






	
comm.service_map

	This is …






	
comm.element_map

	This is …







Functions


	
comm.bind(*args)

	
	Parameters:

	args – a list of clients and servers to bind together in a stack











Protocol Data Units

A Protocol Data Unit (PDU) is the name for a collection of information that
is passed between two entities.  It is composed of Protcol Control Information
(PCI) - information about addressing, processing instructions - and data.
The set of classes in this module are not specific to BACnet.


	
class comm.PCI

	
	
pduSouce

	The source of a PDU.  The datatype and composition of the address is
dependent on the client/server relationship and protocol context.  The
source may be None, in which case it has no source or the source is
implicit.






	
pduDestination

	The destination of a PDU.  The datatype and composition of the address
is dependent on the client/server relationship and protocol context.
The destination may be None, in which case it has no destination or the
destination is implicit.






	
__init__([source=addr][,destination=addr])

	
	Parameters:

	
	source (addr) – the initial source value


	destination (addr) – the initial destination value












Protocol Control Information is generally the context information and/or
other types of processing instructions.






	
class comm.PDUData

	The PDUData class has functions for extracting information from the front
of the data octet string, or append information to the end.  These are helper
functions but may not be applicable for higher layer protocols which may
be passing significantly more complex data.


	
pduData

	This attribute typically holds a simple octet string, but for higher
layers of a protocol stack it may contain more abstract pieces or
components.






	
get()

	Extract a single octet from the front of the data.  If the octet string
is empty this will raise a DecodingError.






	
get_data(len)

	
	Parameters:

	len (integer) – the number of octets to extract.





Extract a number of octets from the front of the data.  If there
are not at least len octets this will raise a DecodingError
exception.






	
get_short()

	Extract a short integer (two octets) from the front of the data.






	
get_long()

	Extract a long integer (four octets) from the front of the data.






	
put(ch)

	
	Parameters:

	ch (octet) – the octet to append to the end










	
put_data(data)

	
	Parameters:

	data (string) – the octet string to append to the end










	
put_short(n)

	
	Parameters:

	integer (short) – two octets to append to the end










	
put_long(n)

	
	Parameters:

	integer (long) – four octets to append to the end














	
class comm.PDU(PCI, PDUData)

	The PDU class combines the PCI and PDUData classes together into one
object.







Protocol Stack Classes


	
class comm.Client

	




	
class comm.Server

	




	
class comm.Debug

	




	
class comm.Echo

	





Application Classes


	
class comm.ServiceAccessPoint

	




	
class comm.ApplicationServiceElement

	




	
class comm.NullServiceElement

	




	
class comm.DebugServiceElement

	







          

      

      

    

  

  
    

    BACnet Protocol Data Units
    

    
 
  

    
      
          
            
  
BACnet Protocol Data Units

This is a long line of text.


Addressing


	
class pdu.Address

	This is a long line of text.


	
addrType

	This is a long line of text.






	
addrNet

	This is a long line of text.






	
addrLen

	This is a long line of text.






	
addrAddr

	This is a long line of text.






	
decode_address(addr)

	
	Parameters:

	addr (string) – address specification to interpret





This is a long line of text.






	
__str__()

	




	
__repr__()

	This method overrides the built-in function to provide a little bit
better string, using __str__ for help.






	
__hash__()

	This method is used to allow addresses to be used as keys in
dictionaries which require keys to be hashable.


Note

Once an address is used in a dictionary is should be considered
immutable.


  
    

    Debugging
    

    
 
  

    
      
          
            
  
Debugging

All applications use some kind of debugging.


Globals


	
debugging._root

	This is a long line of text.







Functions


	
debugging.ModuleLogger(globs)

	
	Parameters:

	globs – dictionary of module globals





This function, posing as an instance creator, returns a …







Function Decorators


	
debugging.function_debugging()

	This function decorates a function with instances of buggers that are
named by the function name combined with the module name.  It is used like
this:

@function_debugging
def some_function(arg):
    if _debug: some_function._debug("some_function %r", arg)
    # rest of code





This results in a bugger called module.some_function that can be
accessed by that name when attaching log handlers.


Note

This should really be called debug_function or something
like that.


  
    

    Console Logging
    

    
 
  

    
      
          
            
  
Console Logging

This module provides a function that is typically used to attach a log handler
to a _debug logger that has been created by the methods in
debugging.


Functions


	
consolelogging.ConsoleLogHandler(loggerRef='', level=logging.DEBUG)

	
	Parameters:

	
	loggerRef (string) – function to call


	level – logging level








This is a long line of text.









          

      

      

    

  

  
    

    Console Command
    

    
 
  

    
      
          
            
  
Console Command

Python has a cmd [http://wiki.python.org/moin/CmdModule] module that makes
it easy to embed a command line interpreter in an application.  BACpypes
extends this interpreter with some commands to assist debugging and runs
the interpreter in a separate thread so it does not interfere with the BACpypes
core.run() functionality.


Functions


	
consolecmd.console_interrupt(*args)

	
	Parameters:

	args – 











Classes


	
class consolecmd.ConsoleCmd(cmd.Cmd, Thread)

	
	
__init__(prompt="> ", allow_exec=False)

	
	Parameters:

	
	prompt (string) – prompt for commands


	allow_exec (boolean) – allow non-commands to be executed













	
run()

	Begin execution of the application’s main event loop.  Place this after the
the initialization statements.






	
do_something(args)

	
	Parameters:

	args – commands





Template of a function implementing a console command.











Commands


	
help

	List an application’s console commands:

> help
Documented commands (type help <topic>):
========================================
EOF  buggers  bugin  bugout  exit  gc  help  nothing  shell










	
gc

	Print out garbage collection information:

> gc
Module                         Type                            Count dCount   dRef
bacpypes.object                OptionalProperty                  787      0      0
bacpypes.constructeddata       Element                           651      0      0
bacpypes.object                ReadableProperty                  362      0      0
bacpypes.object                WritableProperty                   44      0      0
__future__                     _Feature                            7      0      0
Queue                          Queue                               2      0      0
bacpypes.pdu                   Address                             2      0      0
bacpypes.udp                   UDPActor                            2      1      4
bacpypes.bvllservice           UDPMultiplexer                      1      0      0
bacpypes.app                   DeviceInfoCache                     1      0      0

Module                         Type                            Count dCount   dRef
bacpypes.udp                   UDPActor                            2      1      4










	
bugin <name>

	Attach a debugger.:

> bugin bacpypes.task.OneShotTask
handler to bacpypes.task.OneShotTask added










	
bugout <name>

	Detach a debugger.:

> bugout bacpypes.task.OneShotTask
handler to bacpypes.task.OneShotTask removed










	
buggers

	Get a list of the available buggers.:

> buggers
no handlers
__main__
bacpypes
bacpypes.apdu
bacpypes.apdu.APCI
...
bacpypes.vlan.Network
bacpypes.vlan.Node










	
exit

	Exit a BACpypes Console application.:

> exit
Exiting...













          

      

      

    

  

  
    

    Errors
    

    
 
  

    
      
          
            
  
Errors

This module defines the exception class for errors it detects in the
configuration of the stack or in encoding or decoding PDUs.  All of these
exceptions are derived from ValueError (in Python’s built-in exceptions module).


Classes


	
class errors.ConfigurationError

	This error is raised when there are required components that are missing
or defined incorrectly.  Many components, such as instances of
comm.Client and comm.Server, are required to be bound
together in specific ways.






	
class errors.EncodingError

	This error is raised while PDU data is being encoded, which typically means
while some structured data is being turned into an octet stream or some
other simpler structure.  There may be limitations of the values being
encoded.






	
class errors.DecodingError

	This error is raised while PDU data is being decoded, which typically means
some unstructured data like an octet stream is being turned into structured
data.  There may be values in the PDU being decoded that are not
appropriate, or not enough data such as a truncated packet.









          

      

      

    

  

  
    

    Singleton
    

    
 
  

    
      
          
            
  
Singleton

Singleton classes are a design pattern [http://en.wikipedia.org/wiki/Singleton_pattern]
which returns the same object for every ‘create an instance’ call.  In the case
of BACpypes there can only be one instance of a task.TaskManager and
all of the tasks are scheduled through it.  The design pattern “hides” all
of the implementation details of the task manager behind its interface.

There are occasions when the task manager needs to provide additional
functionality, or a derived class would like a change to intercept the methods.
In this case the developer can create a subclass of TaskManager, then
create an instance of it.  Every subsequent call to get a task manager will
return this special instance.


Classes


	
class singleton.Singleton

	By inheriting from this class, all calls to build an object will return
the same object.






	
class singleton.SingletonLogging

	This special class binds together the metaclasses from both this singleton
module and from the debugging.Logging.  Python classes cannot
inherit from two separate metaclasses at the same time, but this class takes
advantage of Pythons ability to have multiple inheritance of metaclasses.









          

      

      

    

  

  
    

    Task
    

    
 
  

    
      
          
            
  
Task

A task is something that needs to be done.  Tasks come in a variety of
flavors:


	OneShotTask - do something once


	OneShotDeleteTask - do something once, then delete the task object


	RecurringTask - do something at regular intervals




Every derived class of one of these classes must provide a process_task method
which will be called at the next opportunity available to the application.
All task processing is expected to be cooperative, which means that it must
be written so that it is cognizant that other tasks may also be waiting for a
chance to be processed.

Tasks are installed when they should be scheduled for processing, may be
suspended or removed from scheduling, and then may be resumed or
re-installed.


Singleton Task Manager

All operations involving tasks are directed to a single instance of
TaskManager or an instance of a derived class.  If the developer
creates a derived class of TaskManager and an instance of it before
the core.run() function is called, that instance will be used to
schedule tasks and return the next task to process.



Globals


	
task._task_manager

	This is a long line of text.






	
task._unscheduled_tasks

	This is a long line of text.







Functions


	
task.OneShotFunction(fn, *args, **kwargs)

	
	Parameters:

	
	fn – function to schedule


	args – function to schedule


	kwargs – function to schedule








This is a long line of text.






	
task.FunctionTask(fn, *args, **kwargs)

	
	Parameters:

	fn – function to update





This is a long line of text.






	
task.RecurringFunctionTask(interval, fn, *args, **kwargs)

	
	Parameters:

	fn – function to update





This is a long line of text.







Function Decorators


	
task.recurring_function(interval)

	
	Parameters:

	interval – interval to call the function





This function will return a decorator which will wrap a function in a task
object that will be called at regular intervals and can also be called
as a function.  For example:

@recurring_function(5000)
def my_ping(arg=None):
    print "my_ping", arg





The my_ping object is a task that can be installed, suspended, and resumed
like any other task.  This is installed to run every 5s and will print:

my_ping None





And can also be called as a regular function with parameters, so calling
my_ping(“hello”) will print:

my_ping hello











Classes


	
class task._Task

	This is a long line of text.


	
install_task(when=None)

	
	Parameters:

	when (float) – time task should be processed





This is a long line of text.






	
process_task()

	
	Parameters:

	when (float) – time task should be processed





This is a long line of text.






	
suspend_task()

	
	Parameters:

	when (float) – time task should be processed





This is a long line of text.






	
resume_task()

	
	Parameters:

	when (float) – time task should be processed





This is a long line of text.










	
class task.OneShotTask

	This is a long line of text.






	
class task.OneShotDeleteTask

	This is a long line of text.






	
class task.RecurringTask

	This is a long line of text.






	
class task.TaskManager

	This is a long line of text.


	
install_task(task)

	
	Parameters:

	task – task to be installed





This is a long line of text.






	
suspend_task(task)

	
	Parameters:

	task – task to be suspended





This is a long line of text.






	
resume_task(task)

	
	Parameters:

	task – task to be resumed





This is a long line of text.






	
get_next_task()

	This is a long line of text.






	
process_task()

	This is a long line of text.













          

      

      

    

  

  
    

    Event
    

    
 
  

    
      
          
            
  
Event

At the heart of core.run() is a call to the select function of the
built in select module.  That function is provided a list of file descriptors
and will exit when there is activity on one of them.

In a multi-threaded application, if the main thread is waiting for IO activity
then child threads need a mechanism to “wake up” the main thread.  This may be
because the child thread has detected some timeout.

An instance of this class is used by the task.TaskManager to wake up
the main thread when tasks are scheduled by child threads.  If the child thread
is requesting “as soon as possible” execution of the task, then scheduling the
task wakes up the main thread, which causes it to be processed.


Note

This is not available on Windows platforms, which may suffer from a small
preformance hit.  This can be mitigated somewhat by changing the SPIN
value in the core module.


  
    

    UDP
    

    
 
  

    
      
          
            
  
UDP

User Datagram Protocol is wonderful…


Classes


	
class udp.UDPDirector(asyncore.dispatcher, Server, ServiceAccessPoint, Logging)

	This is a long line of text.


	
__init__(self, address, timeout=0, actorClass=UDPActor, sid=None, sapID=None)

	
	Parameters:

	
	address – the initial source value


	timeout – the initial source value


	actorClass – the initial source value


	sid – the initial source value


	sapID – the initial source value








This is a long line of text.






	
AddActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
RemoveActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
GetActor(address)

	
	Parameters:

	address – the initial source value





This is a long line of text.






	
handle_connect()

	This is a long line of text.






	
readable()

	This is a long line of text.






	
handle_read()

	This is a long line of text.






	
writable()

	This is a long line of text.






	
handle_write()

	This is a long line of text.






	
handle_close()

	This is a long line of text.






	
indication(pdu)

	This is a long line of text.






	
_response(pdu)

	








	
class udp.UDPActor(Logging)

	This is a long line of text.


	
director

	This is a long line of text.






	
peer

	This is a long line of text.






	
timeout

	This is a long line of text.






	
timer

	This is a long line of text.






	
__init__(director, peer)

	
	Parameters:

	
	director – the initial source value


	peer – the initial destination value








This is a long line of text.






	
IdleTimeout()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
response(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.










	
class udp.UDPPickleActor(UDPActor, Logging)

	
	
indication(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
response(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.













          

      

      

    

  

  
    

    BACnet Virtual Link Layer
    

    
 
  

    
      
          
            
  
BACnet Virtual Link Layer

BACnet virtual link layer…


PDU Base Types

This is a long line of text.


	
class bvll.BVLCI(PCI, DebugContents, Logging)

	
	
bvlciType

	




	
bvlciFunction

	




	
bvlciLength

	



This is a long line of text.






	
class bvll.BVLPDU(BVLCI, PDUData)

	This is a long line of text.







PDU Types

This is a long line of text.


	
class bvll.Result(BVLCI)

	




Broadcast Distribution Table

This is a long line of text.


	
class bvll.ReadBroadcastDistributionTable(BVLCI)

	This is a long line of text.






	
class bvll.ReadBroadcastDistributionTableAck(BVLCI)

	This is a long line of text.






	
class bvll.WriteBroadcastDistributionTable(BVLCI)

	This is a long line of text.







Foreign Devices

This is a long line of text.


	
class bvll.FDTEntry(DebugContents)

	This is a long line of text.






	
class bvll.RegisterForeignDevice(BVLCI)

	This is a long line of text.






	
class bvll.ReadForeignDeviceTable(BVLCI)

	This is a long line of text.






	
class bvll.ReadForeignDeviceTableAck(BVLCI)

	This is a long line of text.






	
class bvll.DeleteForeignDeviceTableEntry(BVLCI)

	This is a long line of text.







Message Broadcasting

This is a long line of text.


	
class bvll.OriginalUnicastNPDU(BVLPDU)

	This is a long line of text.






	
class bvll.OriginalBroadcastNPDU(BVLPDU)

	This is a long line of text.






	
class bvll.DistributeBroadcastToNetwork(BVLPDU)

	This is a long line of text.






	
class bvll.ForwardedNPDU(BVLPDU)

	This is a long line of text.










          

      

      

    

  

  
    

    BACnet Virtual Link Layer Service
    

    
 
  

    
      
          
            
  
BACnet Virtual Link Layer Service

BACnet virtual link layer…


UDP Multiplexing


	
class bvll.UDPMultiplexer

	
	
__init__(addr=None, noBroadcast=False)

	
	Parameters:

	
	addr – address to bind


	noBroadcast – option for separate broadcast socket








This is a long line of text.






	
indication(server, pdu)

	
	Parameters:

	
	server – multiplexer reference


	pdu – message to process








This is a long line of text.






	
confirmation(client, pdu)

	
	Parameters:

	
	server – multiplexer reference


	pdu – message to process








This is a long line of text.










	
class bvll._MultiplexClient

	
	
multiplexer

	This is a long line of text.






	
__init__(mux)

	
	Parameters:

	mux – multiplexer reference





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.










	
class bvll._MultiplexServer

	
	
multiplexer

	This is a long line of text.






	
__init__(mux)

	
	Parameters:

	mux – multiplexer reference





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.











Annex H - Tunneling


	
class bvll.BTR

	
	
__init__()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
add_peer(peerAddr[, networks])

	
	Parameters:

	
	peerAddr – peer address


	networks – list of networks reachable by peer








This is a long line of text.






	
delete_peer(peerAddr)

	
	Parameters:

	peerAddr – peer address





This is a long line of text.











Annex J - B/IP


Service Access Point Types


	
class bvll.BIPSAP(ServiceAccessPoint)

	
	
__init__()

	This is a long line of text.






	
sap_indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
sap_confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.










	
class bvll.BIPSimple(BIPSAP, Client, Server)

	
	
indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.










	
class bvll.BIPForeign(BIPSAP, Client, Server, OneShotTask)

	
	
indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
register(addr, ttl)

	
	Parameters:

	
	addr – message to process


	ttl – time-to-live








This is a long line of text.






	
unregister()

	This is a long line of text.






	
process_task()

	This is a long line of text.










	
class bvll.BIPBBMD(BIPSAP, Client, Server, RecurringTask)

	
	
__init__(addr)

	
	Parameters:

	addr – address of itself





This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
RegisterForeignDevice(addr, ttl)

	
	Parameters:

	
	addr – address of foreign device


	ttl – time-to-live








This is a long line of text.






	
DeleteForeignDeviceTableEntry(addr)

	
	Parameters:

	addr – address of foreign device to delete





This is a long line of text.






	
process_task()

	This is a long line of text.






	
add_peer(addr)

	
	Parameters:

	addr – address of peer to add





This is a long line of text.






	
delete_peer(addr)

	
	Parameters:

	addr – addess of peer to delete





This is a long line of text.











Service Element


	
class bvll.BVLLServiceElement(ApplicationServiceElement)

	
	
indication(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.














          

      

      

    

  

  
    

    TCP
    

    
 
  

    
      
          
            
  
TCP

Transmission Control Protocol is wonderful…


Client Classes


	
class tcp.TCPClientDirector(Server, ServiceAccessPoint)

	This is a long line of text.


	
__init__(address, timeout=0, actorClass=UDPActor)

	
	Parameters:

	
	address – the initial source value


	timeout – the initial source value


	actorClass – the initial source value








This is a long line of text.






	
AddActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
RemoveActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
GetActor(address)

	
	Parameters:

	address – the initial source value





This is a long line of text.






	
connect(address, reconnect=0)

	
	Parameters:

	
	address – address to establish a connection


	reconnect – timer value













	
disconnect(address)

	
	Parameters:

	address – address to disconnect










	
indication(pdu)

	This is a long line of text.










	
class tcp.TCPClient(asyncore.dispatcher)

	
	
__init__(peer)

	
	Parameters:

	peer – This is a long line of text.





This is a long line of text.






	
handle_connect()

	This is a long line of text.






	
handle_expt()

	This is a long line of text.






	
readable()

	This is a long line of text.






	
handle_read()

	This is a long line of text.






	
writable()

	This is a long line of text.






	
handle_write()

	This is a long line of text.






	
handle_close()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – data to send





This is a long line of text.










	
class tcp.TCPClientActor(Logging)

	This is a long line of text.


	
director

	This is a long line of text.






	
peer

	This is a long line of text.






	
timeout

	This is a long line of text.






	
timer

	This is a long line of text.






	
__init__(director, peer)

	
	Parameters:

	
	director – the initial source value


	peer – the initial destination value








This is a long line of text.






	
handle_close()

	This is a long line of text.






	
IdleTimeout()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
response(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
Flush()

	This is a long line of text.










	
class tcp.TCPPickleClientActor(PickleActorMixIn, TCPClientActor)

	This is a long line of text.







Server Classes


	
class tcp.TCPServerDirector(asyncore.dispatcher, Server, ServiceAccessPoint)

	
	
__init__(address, listeners=5, timeout=0, reuse=False, actorClass=TCPServerActor)

	
	Parameters:

	
	address – socket for connection


	listeners – socket for connection


	timeout – socket for connection


	reuse – socket for connection


	actorClass – socket for connection








This is a long line of text.






	
handle_accept()

	This is a long line of text.






	
handle_close()

	This is a long line of text.






	
AddActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
RemoveActor(actor)

	
	Parameters:

	actor – the initial source value





This is a long line of text.






	
GetActor(address)

	
	Parameters:

	address – the initial source value





This is a long line of text.






	
indication(pdu)

	This is a long line of text.










	
class tcp.TCPServer(asyncore.dispatcher)

	
	
__init__(sock, peer)

	
	Parameters:

	
	sock – socket for connection


	peer – This is a long line of text.








This is a long line of text.






	
handle_connect()

	This is a long line of text.






	
readable()

	This is a long line of text.






	
handle_read()

	This is a long line of text.






	
writable()

	This is a long line of text.






	
handle_write()

	This is a long line of text.






	
handle_close()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – data to send





This is a long line of text.










	
class tcp.TCPServerActor(TCPServer)

	This is a long line of text.


	
director

	This is a long line of text.






	
peer

	This is a long line of text.






	
timeout

	This is a long line of text.






	
timer

	This is a long line of text.






	
__init__(director, sock, peer)

	
	Parameters:

	
	director – the initial source value


	sock – socket for connection


	peer – the initial destination value








This is a long line of text.






	
handle_close()

	This is a long line of text.






	
IdleTimeout()

	This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
response(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
Flush()

	This is a long line of text.










	
class tcp.TCPPickleServerActor(PickleActorMixIn, TCPServerActor)

	This is a long line of text.







Streaming Packets


	
class tcp.StreamToPacket(Client, Server)

	
	
Packetize(pdu, streamBuffer)

	This is a long line of text.






	
indication(pdu)

	This is a long line of text.






	
confirmation(pdu)

	This is a long line of text.










	
class tcp.StreamToPacketSAP(ApplicationServiceElement, ServiceAccessPoint)

	





Stream Pickling


	
class tcp.PickleActorMixIn

	
	
indication(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.






	
response(pdu)

	
	Parameters:

	pdu – the initial source value





This is a long line of text.













          

      

      

    

  

  
    

    BACnet Streaming Link Layer
    

    
 
  

    
      
          
            
  
BACnet Streaming Link Layer

BACnet streaming link layer…


PDU Base Types


	
class bsll.BSLCI(PCI)

	
	
bslciType

	




	
bslciFunction

	




	
bslciLength

	



This is a long line of text.






	
class bsll.BSLPDU(BVSCI, PDUData)

	This is a long line of text.







Service Requests


	
class bsll.Result(BVLCI)

	
	
bslciResultCode

	



This is a long line of text.






	
class bsll.ServiceRequest(BSLCI)

	




	
class bsll.AccessRequest(BSLCI)

	




	
class bsll.AccessChallenge(BSLCI)

	




	
class bsll.AccessResponse(BSLCI)

	





Device-To-Device Stream


	
class bsll.DeviceToDeviceAPDU(BSLPDU)

	





Router-To-Router Stream


	
class bsll.RouterToRouterNPDU(BSLPDU)

	





Proxy-To-Server Stream


	
class bsll.ProxyToServerUnicastNPDU(BSLPDU)

	




	
class bsll.ProxyToServerBroadcastNPDU(BSLPDU)

	




	
class bsll.ServerToProxyUnicastNPDU(BSLPDU)

	




	
class bsll.ServerToProxyBroadcastNPDU(BSLPDU)

	





LAN Emulation Stream


	
ClientToLESUnicastNPDU(BSLPDU

	




	
class bsll.ClientToLESBroadcastNPDU(BSLPDU)

	




	
class bsll.LESToClientUnicastNPDU(BSLPDU)

	




	
class bsll.LESToClientBroadcastNPDU(BSLPDU)

	







          

      

      

    

  

  
    

    BACnet Streaming Link Layer Service
    

    
 
  

    
      
          
            
  
BACnet Streaming Link Layer Service

BACnet streaming link layer…


Streaming Packets


	
bsllservice._Packetize(data)

	
	Parameters:

	data – octet stream to slice into packets





This is a long line of text.






	
class bsllservice._StreamToPacket(StreamToPacket)

	This is a long line of text.







User Information

This is a long line of text.


	
class bsllservice.UserInformation

	
	
__init__(**kwargs)

	
	Parameters:

	
	username (string) – the user name


	password (string) – the user password


	allServices (boolean) – 


	deviceToDeviceService (boolean) – 


	routerToRouterService (boolean) – 


	proxyService (boolean) – 


	laneService (boolean) – 


	proxyNetwork (boolean) – 












This is a long line of text.







Connection State

Every thing is connected and every connection has a state.


	NOT_AUTHENTICATED - no authentication attempted


	REQUESTED - access request sent to the server (client only)


	CHALLENGED - access challenge sent to the client (server only)


	AUTHENTICATED - authentication successful




This is a long line of text.


	
class bsllservice.ConnectionState

	This is a long line of text.


	
address

	This is a long line of text.






	
service

	This is a long line of text.






	
connected

	This is a long line of text.






	
accessState

	This is a long line of text.






	
challenge

	This is a long line of text.






	
userinfo

	This is a long line of text.






	
proxyAdapter

	This is a long line of text.











Service Adapter

This is a long line of text.


	
class bsllservice.ServiceAdapter

	This is a long line of text.


	
__init__(mux)

	This is a long line of text.






	
authentication_required(addr)

	This is a long line of text.






	
get_default_user_info(addr)

	This is a long line of text.






	
get_user_info(username)

	This is a long line of text.






	
add_connection(conn)

	This is a long line of text.






	
remove_connection(conn)

	This is a long line of text.






	
service_request(pdu)

	This is a long line of text.






	
service_confirmation(conn, pdu)

	This is a long line of text.










	
class bsllservice.NetworkServiceAdapter(ServiceAdapter, NetworkAdapter)

	This is a long line of text.







TCP Multiplexing

This is a long line of text.


	
class bsllservice.TCPServerMultiplexer(Client)

	This is a long line of text.


	
__init__(addr=None)

	
	Parameters:

	addr – address to bind





This is a long line of text.






	
request(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
indication(server, pdu)

	
	Parameters:

	
	server – multiplexer reference


	pdu – message to process








This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
do_AccessRequest(conn, bslpdu)

	
	Parameters:

	
	conn – message to process


	bslpdu – message to process








This is a long line of text.






	
do_AccessResponse(conn, bslpdu)

	
	Parameters:

	
	conn – message to process


	bslpdu – message to process








This is a long line of text.










	
class bsllservice.TCPClientMultiplexer(Client)

	This is a long line of text.


	
__init__()

	This is a long line of text.






	
request(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
indication(server, pdu)

	
	Parameters:

	
	server – multiplexer reference


	pdu – message to process








This is a long line of text.






	
confirmation(pdu)

	
	Parameters:

	pdu – message to process





This is a long line of text.






	
do_AccessChallenge(conn, bslpdu)

	
	Parameters:

	
	conn – message to process


	bslpdu – message to process








This is a long line of text.










	
class bsllservice.TCPMultiplexerASE(ApplicationServiceElement)

	This is a long line of text.


	
__init__(self, mux)

	This is a long line of text.






	
indication(*args, **kwargs)

	
	Parameters:

	
	addPeer – peer address to add


	delPeer – peer address to delete








This is a long line of text.











Device-to-Device Service

This is a long line of text.


	
class bsllservice.DeviceToDeviceServerService(NetworkServiceAdapter)

	This is a long line of text.


	
process_npdu(npdu)

	This is a long line of text.






	
service_confirmation(conn, pdu)

	This is a long line of text.










	
class bsllservice.DeviceToDeviceClientService(NetworkServiceAdapter)

	This is a long line of text.


	
process_npdu(npdu)

	This is a long line of text.






	
connect(addr)

	This is a long line of text.






	
connect_ack(conn, pdu)

	This is a long line of text.






	
service_confirmation(conn, pdu)

	This is a long line of text.











Router-to-Router Service

This is a long line of text.


	
class bsllservice.RouterToRouterService(NetworkServiceAdapter)

	This is a long line of text.


	
process_npdu(npdu)

	This is a long line of text.






	
connect(addr)

	This is a long line of text.






	
connect_ack(conn, pdu)

	This is a long line of text.






	
add_connection(conn)

	This is a long line of text.






	
remove_connection(conn)

	This is a long line of text.






	
service_confirmation(conn, pdu)

	This is a long line of text.











Proxy Service

This is a long line of text.


	
class bsllservice.ProxyServiceNetworkAdapter(NetworkAdapter)

	This is a long line of text.


	
process_npdu(npdu)

	This is a long line of text.






	
service_confirmation(conn, pdu)

	This is a long line of text.










	
class bsllservice.ProxyServerService(ServiceAdapter)

	This is a long line of text.


	
add_connection(conn)

	This is a long line of text.






	
remove_connection(conn)

	This is a long line of text.






	
service_confirmation(conn, bslpdu)

	This is a long line of text.










	
class bsllservice.ProxyClientService(ServiceAdapter)

	This is a long line of text.


	
__init__(self, mux, addr=None, userinfo=None)

	
	Parameters:

	
	mux – 


	addr – 


	userinfo – 








This is a long line of text.






	
get_default_user_info(addr)

	This is a long line of text.






	
connect(addr=None, userinfo=None)

	This is a long line of text.






	
connect_ack(conn, bslpdu)

	This is a long line of text.






	
service_confirmation(conn, bslpdu)

	This is a long line of text.






	
confirmation(pdu)

	This is a long line of text.











LAN Emulation Service

To be developed.





          

      

      

    

  

  
    

    Network Layer Protocol Data Units
    

    
 
  

    
      
          
            
  
Network Layer Protocol Data Units

This is a long line of text.


PDU Base Types


	
class npdu.NPCI(PCI)

	Header of the network layer message.


	
npduVersion

	This is the version number of the BACnet protocol used. Current version is (1).






	
npduControl

	This is the a single octet. Each bit of the byte indicates the presence of specific fields in the NPCI.






	
npduDADR

	This is the destination address of the network layer message.






	
npduSADR

	This is the source address of the network layer message.






	
npduHopCount

	This is used to determine if network layer messages are being routed in a circular path.






	
npduNetMessage

	This is the network layer message type.






	
npduVendorID

	This is vendor specific ID number used for vendor specific network layer message.






	
update(npci)

	This is a long line of text.






	
encode(pdu)

	
decode(pdu)

	
	Parameters:

	pdu – pdu.PDUData buffer





This is a long line of text.










	
class npdu.NPDU(NPCI, PDUData)

	This is a long line of text.


	
encode(pdu)

	
decode(pdu)

	
	Parameters:

	pdu – pdu.PDUData buffer





This is a long line of text.











Service Requests


	
class npdu.WhoIsRouterToNetwork(NPCI)

	This message is used to find the router that is the destination for a specific network. It is also used for routers to update           routing tables.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.IAmRouterToNetwork(NPCI)

	Response to a WhoIsRouterToNetwork request. Contains network numbers of the networks a router provides access to.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.ICouldBeRouterToNetwork(NPCI)

	Response to a WhoIsRouterToNetwork request. Contains network numbers of the networks a half-router could provide access to over a PTP     connection, but the connection is not currently established.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.RejectMessageToNetwork(NPCI)

	This is a message sent in response to a network layer message that was rejected due to an error.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.RouterBusyToNetwork(NPCI)

	This is a message sent by a router to temporarily stop messages to specific destination networks.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.RouterAvailableToNetwork(NPCI)

	This is a message sent by a router to enable or re-enable messages to specific destination networks.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.RoutingTableEntry

	This is a long line of text.


	
rtDNET

	This is a long line of text.






	
rtPortID

	This is a long line of text.






	
rtPortInfo

	This is a long line of text.










	
class npdu.InitializeRoutingTable(NPCI)

	This is a message used to initialize the routing table of a router or get the contents of the current routing table.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.InitializeRoutingTableAck(NPCI)

	This is a message indicating the routing table of a router has been changed or the routing table has been initialized.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.EstablishConnectionToNetwork(NPCI)

	This is a message used to tell a half-router to make a PTP connection to a network.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.










	
class npdu.DisconnectConnectionToNetwork(NPCI)

	This is a message used to tell a half-router to close a PTP connection to a network.


	
encode(npdu)

	
decode(npdu)

	
	Parameters:

	pdu – NPDU buffer





This is a long line of text.













          

      

      

    

  

  
    

    Network Layer Service
    

    
 
  

    
      
          
            
  
Network Layer Service

BACnet network layer…


Connection State

Every thing is connected and every connection has a state.


	ROUTER_AVAILABLE - normal


	ROUTER_BUSY - router is busy


	ROUTER_DISCONNECTED - could make a connection, but hasn’t


	ROUTER_UNREACHABLE - cannot route




This is a long line of text.



Reference Structures

This is a long line of text.


	
class netservice.NetworkReference

	This is a long line of text.


	
network

	This is a long line of text.






	
router

	This is a long line of text.






	
status

	This is a long line of text.










	
class netservice.RouterReference

	This is a long line of text.


	
adapter

	This is a long line of text.






	
address

	This is a long line of text.






	
networks

	This is a long line of text.






	
status

	This is a long line of text.











Network Service

This is a long line of text.


	
class netservice.NetworkServiceElement(ApplicationServiceElement)

	This is a long line of text.


	
indication(adapter, npdu)

	
	Parameters:

	
	adapter – 


	npdu – 








This is a long line of text.






	
confirmation(adapter, npdu)

	
	Parameters:

	
	adapter – 


	npdu – 








This is a long line of text.






	
WhoIsRouterToNetwork(adapter, npdu)

	This is a long line of text.






	
IAmRouterToNetwork(adapter, npdu)

	This is a long line of text.






	
ICouldBeRouterToNetwork(adapter, npdu)

	This is a long line of text.






	
RejectMessageToNetwork(adapter, npdu)

	This is a long line of text.






	
RouterBusyToNetwork(adapter, npdu)

	This is a long line of text.






	
RouterAvailableToNetwork(adapter, npdu)

	This is a long line of text.






	
InitializeRoutingTable(adapter, npdu)

	This is a long line of text.






	
InitializeRoutingTableAck(adapter, npdu)

	This is a long line of text.






	
EstablishConnectionToNetwork(adapter, npdu)

	This is a long line of text.






	
DisconnectConnectionToNetwork(adapter, npdu)

	This is a long line of text.













          

      

      

    

  

  
    

    Virtual LAN
    

    
 
  

    
      
          
            
  
Virtual LAN

This is a long line of text.


	
class vlan.Network

	This is a long line of text.


	
nodes

	This is a long line of text.






	
dropPercent

	This is a long line of text.






	
addrLen

	This is a long line of text.






	
addrAddr

	This is a long line of text.






	
__init__(addr, dropPercent=0.0)

	
	Parameters:

	dropPercent (float) – percentage of packets to drop





This is a long line of text.






	
add_node(node)

	
	Parameters:

	node (Node) – node to add to the network





This is a long line of text.






	
remove_node(node)

	
	Parameters:

	node (Node) – node to remove from the network





This is a long line of text.






	
process_pdu(pdu)

	
	Parameters:

	pdu – pdu to send on the network





This is a long line of text.






	
__len__()

	Simple mechanism to return the number of nodes on the network.










	
class vlan.Node

	This is a long line of text.


	
__init__(addr, lan=None, promiscuous=False, spoofing=False)

	
	Parameters:

	
	addr (Address) – address for the node


	lan (Network) – network reference


	promiscuous (boolean) – receive all packets


	spoofing (boolean) – send with mocked source address








This is a long line of text.






	
bind(lan)

	
	Parameters:

	lan (Network) – network reference





This is a long line of text.






	
indication(pdu)

	
	Parameters:

	pdu – pdu to send on the network





This is a long line of text.












          

      

      

    

  

  
    

    Primative Data
    

    
 
  

    
      
          
            
  
Primative Data

This is a long line of text.


Tags

This is a long line of text.


	
class primitivedata.Tag

	This is a long line of text.


	
tagClass

	This is a long line of text.






	
tagNumber

	This is a long line of text.






	
tagLVT

	This is a long line of text.






	
tagData

	This is a long line of text.






	
_app_tag_name

	This is a long line of text.






	
_app_tag_class

	This is a long line of text.






	
__init__(*args)

	This is a long line of text.






	
set(tclass, tnum, tlvt=0, tdata='')

	This is a long line of text.






	
set_app_data(tnum, tdata)

	This is a long line of text.






	
encode(pdu)

	
decode(pdu)

	This is a long line of text.






	
app_to_context(context)

	
context_to_app(dataType)

	This is a long line of text.






	
app_to_object()

	This is a long line of text.






	
__repr__()

	This is a long line of text.






	
__eq__(tag)

	
__ne__(tag)

	This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.










	
class primitivedata.ApplicationTag(Tag)

	This is a long line of text.






	
class primitivedata.ContextTag(Tag)

	This is a long line of text.






	
class primitivedata.OpeningTag(Tag)

	This is a long line of text.






	
class primitivedata.ClosingTag(Tag)

	This is a long line of text.






	
class primitivedata.TagList

	This is a long line of text.







Atomic Data Types

This is a long line of text.


	
class primitivedata.Atomic

	This is a long line of text.


	
__cmp__(other)

	
	Parameters:

	other – reference to some other atomic data type object





This is a long line of text.










	
class primitivedata.Null(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Boolean(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Unsigned(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Integer(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Real(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Double(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.OctetString(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.CharacterString(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.BitString(Atomic)

	This is a long line of text.


	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.






	
__getitem__(bit)

	This is a long line of text.






	
__setitem__(bit, value)

	This is a long line of text.










	
class primitivedata.Enumerated(Atomic)

	This is a long line of text.


	
enumerations

	This is a long line of text.






	
_xlate_table

	This is a long line of text.






	
__getitem__(item)

	This is a long line of text.






	
get_long()

	This is a long line of text.






	
keylist()

	This is a long line of text.






	
__cmp__(other)

	This is a long line of text.






	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Date(Atomic)

	This is a long line of text.


	
__init__(arg=None, year=255, month=255, day=255, dayOfWeek=255)

	
	Parameters:

	
	arg – 


	year – 


	month – 


	day – 


	dayOfWeek – 








This is a long line of text.






	
now()

	This is a long line of text.






	
CalcDayOfWeek()

	This is a long line of text.






	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.Time(Atomic)

	This is a long line of text.


	
__init__(arg=None, hour=255, minute=255, second=255, hundredth=255)

	
	Parameters:

	
	arg – 


	hour – 


	minute – 


	second – 


	hundredth – 








This is a long line of text.






	
now()

	This is a long line of text.






	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.










	
class primitivedata.ObjectType(Enumerated)

	This is a long line of text.






	
class primitivedata.ObjectIdentifier(Atomic)

	This is a long line of text.


	
objectTypeClass

	This is a long line of text.






	
__init__(*args)

	This is a long line of text.






	
set_tuple(objType, objInstance)

	
get_tuple()

	
	Parameters:

	
	objType – ObjectType object type


	objInstance (int) – object instance








This is a long line of text.






	
set_long(value)

	
get_long()

	This is a long line of text.






	
encode(tag)

	
decode(tag)

	
	Parameters:

	tag – Tag reference





This is a long line of text.






	
__hash__()

	This is a long line of text.






	
__cmp__(other)

	This is a long line of text.













          

      

      

    

  

  
    

    Constructed Data
    

    
 
  

    
      
          
            
  
Constructed Data

This is a long line of text.


Elements

This is a long line of text.


	
class constructeddata.Element

	
	
name

	This is a long line of text.






	
klass

	This is a long line of text.






	
context

	This is a long line of text.






	
optional

	This is a long line of text.











Sequences

This is a long line of text.


	
class constructeddata.Sequence

	
	
sequenceElements

	This is a long line of text.






	
encode(taglist)

	
decode(taglist)

	
	Parameters:

	taglist – list of primitivedata.Tag objects





This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.










	
class constructeddata.SequenceOf(klass)

	
	
append(value)

	This is a long line of text.






	
__getitem__(item)

	
	Parameters:

	item – item number





This is a long line of text.






	
__len__()

	This is a long line of text.






	
encode(taglist)

	
decode(taglist)

	
	Parameters:

	taglist – list of primitivedata.Tag objects





This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.











Arrays

This is a long line of text.


	
class constructeddata.Array

	This is a long line of text.






	
class constructeddata.ArrayOf(klass)

	This is a long line of text.


	
append(value)

	This is a long line of text.






	
__len__()

	This is a long line of text.






	
__getitem__(item)

	
	Parameters:

	item – item number





This is a long line of text.






	
__setitem__(item, value)

	
	Parameters:

	
	item – item number


	value – new value for item








This is a long line of text.






	
__delitem__(item)

	
	Parameters:

	item – item number





This is a long line of text.






	
index(value)

	
	Parameters:

	value – new value for item





This is a long line of text.






	
encode(taglist)

	
decode(taglist)

	
	Parameters:

	taglist – list of primitivedata.Tag objects





This is a long line of text.






	
encode_item(item, taglist)

	
decode_item(item, taglist)

	
	Parameters:

	
	item – item number


	taglist – list of primitivedata.Tag objects








This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.











Choice

This is a long line of text.


	
class constructeddata.Choice

	This is a long line of text.


	
__init__(self, **kwargs)

	
	Parameters:

	kwargs – expected value to set choice





This is a long line of text.






	
encode(taglist)

	
decode(taglist)

	
	Parameters:

	taglist – list of primitivedata.Tag objects





This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.











Any

This is a long line of text.


	
class constructeddata.Any

	This is a long line of text.


	
tagList

	This is a long line of text.






	
__init__(self, *args)

	
	Parameters:

	args – initial values to cast in





This is a long line of text.






	
encode(taglist)

	
decode(taglist)

	
	Parameters:

	taglist – list of primitivedata.Tag objects





This is a long line of text.






	
cast_in(element)

	
	Parameters:

	element – value to cast in





This is a long line of text.






	
cast_out(klass)

	
	Parameters:

	klass – class reference to decode value





This is a long line of text.






	
debug_contents(indent=1, file=sys.stdout, _ids=None)

	This is a long line of text.













          

      

      

    

  

  
    

    Base Types
    

    
 
  

    
      
          
            
  
Base Types

This is a long line of text.


Array


	
class basetypes.ArrayOfObjectIdentifier

	This is a long line of text.







Bit Strings


	
class basetypes.BACnetDaysOfWeek(BitString)

	This is a long line of text.






	
class basetypes.BACnetEventTransitionBits(BitString)

	This is a long line of text.






	
class basetypes.BACnetLimitEnable(BitString)

	This is a long line of text.






	
class basetypes.BACnetObjectTypesSupported(BitString)

	This is a long line of text.






	
class basetypes.BACnetResultFlags(BitString)

	This is a long line of text.






	
class basetypes.BACnetServicesSupported(BitString)

	This is a long line of text.






	
class basetypes.BACnetStatusFlags(BitString)

	This is a long line of text.







Enumerations


	
class basetypes.BACnetAccumulatorStatus(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetAction(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetBinaryPV(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetDeviceStatus(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetEngineeringUnits(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetEventState(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetEventType(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetFileAccessMethod(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetLifeSafetyMode(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetProgramError(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetProgramRequest(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetProgramState(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetPropertyIdentifier(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetNotifyType(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetPolarity(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetPrescale(Sequence)

	This is a long line of text.






	
class basetypes.BACnetReliability(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetSegmentation(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetVTClass(Enumerated)

	This is a long line of text.






	
class basetypes.BACnetNodeType(Enumerated)

	This is a long line of text.







Structures


	
class basetypes.BACnetActionCommand(Sequence)

	This is a long line of text.






	
class basetypes.BACnetActionList(Sequence)

	This is a long line of text.






	
class basetypes.BACnetAddress(Sequence)

	This is a long line of text.






	
class basetypes.BACnetAddressBinding(Sequence)

	This is a long line of text.






	
class basetypes.BACnetDateRange(Sequence)

	This is a long line of text.






	
class basetypes.BACnetWeekNDay(OctetString)

	This is a long line of text.






	
class basetypes.BACnetCalendarEntry(Choice)

	This is a long line of text.






	
class basetypes.BACnetScale(Choice)

	This is a long line of text.






	
class basetypes.BACnetTimeValue(Sequence)

	This is a long line of text.






	
class basetypes.BACnetDailySchedule(Sequence)

	This is a long line of text.






	
class basetypes.BACnetDateTime(Sequence)

	This is a long line of text.






	
class basetypes.BACnetRecipient(Choice)

	This is a long line of text.






	
class basetypes.BACnetDestination(Sequence)

	This is a long line of text.






	
class basetypes.BACnetPropertyStates(Choice)

	This is a long line of text.






	
class basetypes.NotificationChangeOfBitstring(Sequence)

	This is a long line of text.






	
class basetypes.NotificationChangeOfState(Sequence)

	This is a long line of text.






	
class basetypes.NotificationChangeOfValueNewValue(Choice)

	This is a long line of text.






	
class basetypes.NotificationChangeOfValue(Sequence)

	This is a long line of text.






	
class basetypes.NotificationCommandFailure(Sequence)

	This is a long line of text.






	
class basetypes.NotificationFloatingLimit(Sequence)

	This is a long line of text.






	
class basetypes.NotificationOutOfRange(Sequence)

	This is a long line of text.






	
class basetypes.NotificationComplexEventType(Any)

	This is a long line of text.






	
class basetypes.NotificationChangeOfLifeSafety(Any)

	This is a long line of text.






	
class basetypes.NotificationExtended(Any)

	This is a long line of text.






	
class basetypes.NotificationBufferReady(Any)

	This is a long line of text.






	
class basetypes.NotificationUnsignedRange(Any)

	This is a long line of text.






	
class basetypes.BACnetNotificationParameters(Choice)

	This is a long line of text.






	
class basetypes.BACnetObjectPropertyReference(Sequence)

	This is a long line of text.






	
class basetypes.BACnetObjectPropertyValue(Sequence)

	This is a long line of text.






	
class basetypes.BACnetObjectType(ObjectType)

	This is a long line of text.






	
class basetypes.BACnetPriorityValue(Choice)

	This is a long line of text.






	
class basetypes.BACnetPriorityArray

	Implemented as ArrayOf(BACnetPriorityValue)






	
class basetypes.BACnetPropertyReference(Sequence)

	This is a long line of text.






	
class basetypes.BACnetPropertyValue(Sequence)

	This is a long line of text.






	
class basetypes.BACnetRecipientProcess(Sequence)

	This is a long line of text.






	
class basetypes.BACnetSessionKey(Sequence)

	This is a long line of text.






	
class basetypes.BACnetSetpointReference(Sequence)

	This is a long line of text.






	
class basetypes.BACnetSpecialEvent(Sequence)

	This is a long line of text.






	
class basetypes.BACnetTimeStamp(Choice)

	This is a long line of text.






	
class basetypes.BACnetVTSession(Sequence)

	This is a long line of text.






	
class basetypes.BACnetDeviceObjectReference(Sequence)

	This is a long line of text.









          

      

      

    

  

  
    

    Application Layer PDUs
    

    
 
  

    
      
          
            
  
Application Layer PDUs

This is a long line of text.


Globals


	
apdu.apdu_types

	This is a long line of text.






	
apdu.confirmed_request_types

	This is a long line of text.






	
apdu.complex_ack_types

	This is a long line of text.






	
apdu.unconfirmed_request_types

	This is a long line of text.






	
apdu.error_types

	This is a long line of text.







Functions


	
apdu.register_apdu_type(klass)

	This is a long line of text.






	
apdu.register_confirmed_request_type(klass)

	This is a long line of text.






	
apdu.register_complex_ack_type(klass)

	This is a long line of text.






	
apdu.register_unconfirmed_request_type(klass)

	This is a long line of text.






	
apdu.register_error_type(klass)

	This is a long line of text.






	
apdu.encode_max_apdu_segments(arg)

	




	
apdu.decode_max_apdu_segments(arg)

	This is a long line of text.






	
apdu.encode_max_apdu_response(arg)

	




	
apdu.decode_max_apdu_response(arg)

	This is a long line of text.







PDU Base Types

This is a long line of text.


	
class apdu.APCI(PCI)

	
	
apduType

	




	
apduSeg

	




	
apduMor

	




	
apduSA

	




	
apduSrv

	




	
apduNak

	




	
apduSeq

	




	
apduWin

	




	
apduMaxSegs

	




	
apduMaxResp

	




	
apduService

	




	
apduInvokeID

	




	
apduAbortRejectReason

	



This is a long line of text.


	
update(apci)

	
	Parameters:

	apci – source data to copy





This is a long line of text.






	
encode(pdu)

	
decode(pdu)

	
	Parameters:

	pdu – pdu.PDUData buffer





This is a long line of text.










	
class apdu.APDU(APCI, PDUData)

	This is a long line of text.


	
encode(pdu)

	
decode(pdu)

	
	Parameters:

	pdu – pdu.PDUData buffer





This is a long line of text.










	
class apdu._APDU(APDU)

	This is a long line of text.


	
encode(pdu)

	
decode(pdu)

	
	Parameters:

	pdu – pdu.PDUData buffer





This is a long line of text.






	
set_context(context)

	
	Parameters:

	context – APDU reference















Basic Classes

This is a long line of text.


	
class apdu.ConfirmedRequestPDU(_APDU)

	This is a long line of text.






	
class apdu.ConfirmedRequestPDU(_APDU)

	This is a long line of text.






	
class apdu.UnconfirmedRequestPDU(_APDU)

	This is a long line of text.






	
class apdu.SimpleAckPDU(_APDU)

	This is a long line of text.






	
class apdu.ComplexAckPDU(_APDU)

	This is a long line of text.






	
class apdu.SegmentAckPDU(_APDU)

	This is a long line of text.






	
class apdu.ErrorPDU(_APDU)

	This is a long line of text.






	
class apdu.RejectPDU(_APDU)

	This is a long line of text.






	
class apdu.SimpleAckPDU(_APDU)

	This is a long line of text.







Sequence Classes

This is a long line of text.


	
class apdu.APCISequence(APCI, Sequence)

	This is a long line of text.






	
class apdu.ConfirmedRequestSequence(APCISequence, ConfirmedRequestPDU)

	This is a long line of text.






	
class apdu.ComplexAckSequence(APCISequence, ComplexAckPDU)

	This is a long line of text.






	
class apdu.UnconfirmedRequestSequence(APCISequence, UnconfirmedRequestPDU)

	This is a long line of text.






	
class apdu.ErrorSequence(APCISequence, ErrorPDU)

	This is a long line of text.






Errors

This is a long line of text.


	
class apdu.ErrorClass(Enumerated)

	This is a long line of text.






	
class apdu.ErrorCode(Enumerated)

	This is a long line of text.






	
class apdu.ErrorType(Sequence)

	This is a long line of text.






	
class apdu.Error(ErrorSequence, ErrorType)

	This is a long line of text.







Who-Is/I-Am

This is a long line of text.


	
class apdu.WhoIsRequest(UnconfirmedRequestSequence)

	This is a long line of text.






	
class apdu.IAmRequest(UnconfirmedRequestSequence)

	This is a long line of text.







Who-Has/I-Have

This is a long line of text.


	
class apdu.WhoHasRequest(UnconfirmedRequestSequence)

	This is a long line of text.






	
class apdu.WhoHasLimits(Sequence)

	This is a long line of text.






	
class apdu.WhoHasObject(Choice)

	This is a long line of text.





This is a long line of text.


	
class apdu.IHaveRequest(UnconfirmedRequestSequence)

	This is a long line of text.







Read-Property

This is a long line of text.


	
class apdu.ReadPropertyRequest(ConfirmedRequestSequence)

	This is a long line of text.






	
class apdu.ReadPropertyACK(ComplexAckSequence)

	This is a long line of text.







Write-Property

This is a long line of text.


	
class apdu.WritePropertyRequest(ConfirmedRequestSequence)

	This is a long line of text.







Read-Property-Multiple

This is a long line of text.


	
class apdu.ReadPropertyMultipleRequest(ConfirmedRequestSequence)

	This is a long line of text.






	
class apdu.ReadAccessSpecification(Sequence)

	This is a long line of text.






	
class apdu.ReadPropertyMultipleACK(ComplexAckSequence)

	This is a long line of text.






	
class apdu.ReadAccessResult(Sequence)

	This is a long line of text.






	
class apdu.ReadAccessResultElement(Sequence)

	This is a long line of text.






	
class apdu.ReadAccessResultElementChoice(Choice)

	This is a long line of text.







Write-Property-Multiple

This is a long line of text.


	
class apdu.WritePropertyMultipleRequest(ConfirmedRequestSequence)

	This is a long line of text.






	
class apdu.WriteAccessSpecification(Sequence)

	This is a long line of text.






	
class apdu.WritePropertyMultipleError(ErrorSequence)

	This is a long line of text.







Read-Range

This is a long line of text.


	
class apdu.ReadRangeRequest(ConfirmedRequestSequence)

	This is a long line of text.






	
class apdu.Range(Choice)

	This is a long line of text.






	
class apdu.RangeByPosition(Sequence)

	This is a long line of text.






	
class apdu.RangeBySequenceNumber(Sequence)

	This is a long line of text.






	
class apdu.RangeByTime(Sequence)

	This is a long line of text.






	
class apdu.ReadRangeACK(ComplexAckSequence)

	This is a long line of text.







Event-Notification

This is a long line of text.


	
class apdu.ConfirmedEventNotificationRequest(ConfirmedRequestSequence)

	This is a long line of text.






	
class apdu.UnconfirmedEventNotificationRequest(Sequence)

	This is a long line of text.







Change-Of-Value-Notification

This is a long line of text.


	
class apdu.UnconfirmedCOVNotificationRequest(UnconfirmedRequestSequence)

	This is a long line of text.







Other Errors

This is a long line of text.


	
class apdu.ChangeListError(ErrorSequence)

	This is a long line of text.






	
class apdu.CreateObjectError(ErrorSequence)

	This is a long line of text.






	
class apdu.ConfirmedPrivateTransferError(ErrorSequence)

	This is a long line of text.






	
class apdu.VTCloseError(ErrorSequence)

	This is a long line of text.










          

      

      

    

  

  
    

    Objects
    

    
 
  

    
      
          
            
  
Objects

BACnet virtual link layer…


Globals

This is a long line of text.


	
object.map_name_re

	This is a long line of text.






	
object.object_types

	This is a long line of text.







Functions

This is a long line of text.


	
object.map_name(name)

	
	Parameters:

	name (string) – something





This is a long line of text.






	
object.register_object_type(klass)

	
	Parameters:

	klass – class to register





This is a long line of text.






	
object.get_object_class(objectType)

	
	Parameters:

	objectType – something



	Returns:

	something





This is a long line of text.






	
object.get_datatype(objectType, property)

	
	Parameters:

	
	objectType – something


	property – something






	Returns:

	datatype class





This is a long line of text.







Properties

This is a long line of text.


	
class object.Property

	This is a long line of text.


	
identifier

	This is a long line of text.






	
datatype

	This is a long line of text.






	
optional

	This is a long line of text.






	
mutable

	This is a long line of text.






	
default

	This is a long line of text.






	
ReadProperty(obj, arrayIndex=None)

	
	Parameters:

	
	obj – object reference


	arrayIndex – optional array index








This is a long line of text.






	
WriteProperty(obj, value, arrayIndex=None, priority=None)

	
	Parameters:

	
	obj – object reference


	value – new property value


	arrayIndex – optional array index


	priority – optional priority








This is a long line of text.










	
class object.ObjectIdentifierProperty

	
	
WriteProperty(obj, value, arrayIndex=None, priority=None)

	
	Parameters:

	
	obj – object reference


	value – new property value


	arrayIndex – optional array index


	priority – optional priority








This is a long line of text.










	
class object.CurrentDateProperty

	
	
ReadProperty(obj, arrayIndex=None)

	
	Parameters:

	
	obj – object reference


	arrayIndex – optional array index








This is a long line of text.






	
WriteProperty(obj, value, arrayIndex=None, priority=None)

	This method is to override the Property.WriteProperty() so
instances of this class will raise an expection and be considered
unwriteable.










	
class object.CurrentTimeProperty

	
	
ReadProperty(obj, arrayIndex=None)

	
	Parameters:

	
	obj – object reference


	arrayIndex – optional array index








This is a long line of text.






	
WriteProperty(obj, value, arrayIndex=None, priority=None)

	This method is to override the Property.WriteProperty() so
instances of this class will raise an expection and be considered
unwriteable.











Objects

This is a long line of text.



Standard Object Types

This is a long line of text.


	
class object.AccumulatorObject(Object)

	




	
class object.BACnetAccumulatorRecord(Sequence)

	




	
class object.AnalogInputObject(Object)

	




	
class object.AnalogOutputObject(Object)

	




	
class object.AnalogValueObject(Object)

	




	
class object.AveragingObject(Object)

	




	
class object.BinaryInputObject(Object)

	




	
class object.BinaryOutputObject(Object)

	




	
class object.BinaryValueObject(Object)

	




	
class object.CalendarObject(Object)

	




	
class object.CommandObject(Object)

	




	
class object.DeviceObject(Object)

	




	
class object.EventEnrollmentObject(Object)

	




	
class object.FileObject(Object)

	




	
class object.GroupObject(Object)

	




	
class object.LifeSafetyPointObject(Object)

	




	
class object.LifeSafetyZoneObject(Object)

	




	
class object.LoopObject(Object)

	




	
class object.MultiStateInputObject(Object)

	




	
class object.MultiStateOutputObject(Object)

	




	
class object.MultiStateValueObject(Object)

	




	
class object.NotificationClassObject(Object)

	




	
class object.ProgramObject(Object)

	




	
class object.PulseConverterObject(Object)

	




	
class object.ScheduleObject(Object)

	




	
class object.StructuredViewObject(Object)

	




	
class object.TrendLogObject(Object)

	





Extended Object Types


	
class object.LocalDeviceObject(DeviceObject)

	







          

      

      

    

  

  
    

    Application
    

    
 
  

    
      
          
            
  
Application

This is a long line of text.


Device Information

The device information objects and associated cache are used to assist with
the following:


	Device-address-binding, the close associate between the device identifier
for a device and its network address


	Construction of confirmed services to determine if a device can accept
segmented requests and/or responses and the maximum size of an APDU


	The vendor of the device to know what additional vendor specific objects,
properties, and other datatypes are available





	
class app.DeviceInfo

	This is a long line of text.


	
deviceIdentifier

	The device instance number associated with the device.






	
address

	The pdu.LocalStation or pdu.RemoteStation associated
with the device.






	
maxApduLengthAccepted

	The maximum APDU length acccepted, which has the same value as the
property of the object.DeviceObject of the device.  This is
typically initialized with the parameter with the same name from the
apdu.IAmRequest.






	
segmentationSupported

	The enumeration value basetypes.Segmentation that describes
the segmentation supported by the device; sending, receiving, both,
or no segmentation supported.






	
vendorID

	The vendor identifier of the device.






	
maxNpduLength

	The maximum length of an NPDU permitted by the links used by the local,
remote, and intervening networks.






	
maxSegmentsAccepted

	The maximum number of segments of an APDU that this device will accept.






	
__init__()

	Initialize a DeviceInfo object using the default values that
are typical for BACnet devices.










	
class app.DeviceInfoCache

	An instance of this class is used to manage the cache of device information
on behalf of the application.  The information may come from interrogating
the device as it presents itself on the network or from a database, or
some combination of the two.

The default implementation is to only use information from the network and
provide some reasonable defaults when information isn’t available.  The
Application is provided a reference to an instance of this class
or a derived class, and multiple application instances may share a cache,
if that’s appropriate.


	
cache

	This is a private dictionary for use by the class or derived class
methods.  The default implementation uses a mix of device identifiers,
addresses, or both to reference DeviceInfo objects.






	
has_device_info(key)

	
	Parameters:

	key – a device object identifier, a pdu.LocalStation or a
RemoteStation address.





Return true if there is a DeviceInfo instance in the cache.






	
add_device_info(apdu)

	
	Parameters:

	apdu (IAmRequest) – an IAmRequest





This function is called by an application when it receives an
apdu.IAmRequest and it wants to cache the information.  For
example the application had issued a apdu.WhoIsRequest for a
device and this is the corresponding apdu.IAmRequest.






	
get_device_info(key)

	
	Parameters:

	key – a device object identifier, a pdu.LocalStation or a
RemoteStation address.





Return the DeviceInfo instance in the cache associated with the
key, or None if it does not exist.






	
update_device_info(info)

	
	Parameters:

	info (DeviceInfo) – the updated device information





This function is called by the application service layer when the device
information has changed as a result of comparing it with incoming
requests.  This function is overriden when the application has additional
work, such as updating a database.






	
release_device_info(info)

	
	Parameters:

	info (DeviceInfo) – device information no longer being used





This function is called by the application service layer when there are
no more confirmed requests associated with the device and the
DeviceInfo can be removed from the cache.  This function is
overridden by a derived class to change the cache behaviour, for example
perhaps the objects are removed from the cache until some timer expires.











Base Class

This is a long line of text.


	
class app.Application(ApplicationServiceElement)

	This is a long line of text.


	
__init__(localDevice, localAddress)

	
	Parameters:

	
	localDevice (DeviceObject) – the local device object


	localAddress (Address) – the local address


	actorClass – the initial source value








This is a long line of text.






	
snork(address=None, segmentationSupported='no-segmentation', maxApduLengthAccepted=1024, maxSegmentsAccepted=None)

	
	Parameters:

	
	localAddress (Address) – the local address


	segmentationSupported – enumeration basetypes.BACnetSegmentation


	maxApduLengthAccepted – maximum APDU length


	maxSegmentsAccepted – segmentation parameter








This is a long line of text.






	
add_object(obj)

	
	Parameters:

	obj – the initial source value





This is a long line of text.






	
delete_object(obj)

	
	Parameters:

	obj – the initial source value





This is a long line of text.






	
get_object_id(objid)

	
	Parameters:

	obj – the initial source value





This is a long line of text.






	
get_object_name(objname)

	
	Parameters:

	objname – address to establish a connection










	
iter_objects()

	
	Parameters:

	address – address to disconnect










	
indication(apdu)

	
	Parameters:

	apdu – application layer PDU





This is a long line of text.






	
do_WhoIsRequest(apdu)

	
	Parameters:

	apdu – Who-Is request, apdu.WhoIsRequest





This is a long line of text.






	
do_IAmRequest(apdu)

	
	Parameters:

	apdu – I-Am request, apdu.IAmRequest





This is a long line of text.






	
do_ReadPropertyRequest(apdu)

	
	Parameters:

	apdu – Read-Property request, apdu.ReadPropertyRequest





This is a long line of text.






	
do_WritePropertyRequest(apdu)

	
	Parameters:

	apdu – Write-Property request, apdu.WritePropertyRequest





This is a long line of text.











BACnet/IP Applications

This is a long line of text.


	
class app.BIPSimpleApplication(Application)

	
	
__init__(localDevice, localAddress)

	
	Parameters:

	
	localDevice – This is a long line of text.


	localAddress – This is a long line of text.








This is a long line of text.










	
class app.BIPForeignApplication(Application)

	
	
__init__(localDevice, localAddress, bbmdAddress, bbmdTTL)

	
	Parameters:

	
	localDevice – This is a long line of text.


	localAddress – This is a long line of text.


	bbmdAddress – This is a long line of text.


	bbmdTTL – This is a long line of text.








This is a long line of text.











BACnet/IP Network Application

This is a long line of text.


	
class app.BIPNetworkApplication(NetworkServiceElement)

	
	
__init__(localAddress)

	
	Parameters:

	localAddress – This is a long line of text.





This is a long line of text.













          

      

      

    

  

  
    

    Application Service
    

    
 
  

    
      
          
            
  
Application Service

This is a long line of text.


Segmentation State Machine

This is a long line of text.


	
class appservice.SSM(OneShotTask)

	This is a long line of text.


	
remoteDevice

	This is a long line of text.






	
invokeID

	This is a long line of text.






	
state

	This is a long line of text.






	
segmentAPDU

	This is a long line of text.






	
segmentSize

	This is a long line of text.






	
segmentCount

	This is a long line of text.






	
maxSegmentsAccepted

	This is a long line of text.






	
retryCount

	This is a long line of text.






	
segmentRetryCount

	This is a long line of text.






	
sentAllSegments

	This is a long line of text.






	
lastSequenceNumber

	This is a long line of text.






	
initialSequenceNumber

	This is a long line of text.






	
actualWindowSize

	This is a long line of text.






	
proposedWindowSize

	This is a long line of text.






	
__init__(sap)

	
	Parameters:

	sap – service access point reference





This is a long line of text.






	
start_timer(msecs)

	
	Parameters:

	msecs – milliseconds





This is a long line of text.






	
stop_timer()

	This is a long line of text.






	
restart_timer(msecs)

	
	Parameters:

	msecs – milliseconds





This is a long line of text.






	
set_state(newState, timer=0)

	
	Parameters:

	
	newState – new state


	timer – timer value













	
set_segmentation_context(apdu)

	
	Parameters:

	apdu – application PDU










	
get_segment(indx)

	
	Parameters:

	apdu – application layer PDU





This is a long line of text.






	
append_segment(apdu)

	
	Parameters:

	apdu – application PDU





This is a long line of text.






	
in_window(seqA, seqB)

	
	Parameters:

	
	seqA (int) – latest sequence number


	seqB (int) – initial sequence number








This is a long line of text.






	
FillWindow(self, seqNum)

	
	Parameters:

	seqNum (int) – initial sequence number





This is a long line of text.











Client Segmentation State Machine

This is a long line of text.



Server Segmentation State Machine

This is a long line of text.



Application Stack

This is a long line of text.


	
class appservice.StateMachineAccessPoint(DeviceInfo, Client, ServiceAccessPoint)

	This is a long line of text.






	
class appservice.ApplicationServiceAccessPoint(ApplicationServiceElement, ServiceAccessPoint)

	This is a long line of text.









          

      

      

    

  

  
    

    Service Modules
    

    
 
  

    
      
          
            
  
Service Modules



	Device Services
	Support Classes





	Object Services
	Support Functions





	File Services
	Support Classes











Change Detection and Reporting



	Detect
	Classes

	Decorators





	Change of Value (COV) Services
	Support Classes












          

      

      

    

  

  
    

    Device Services
    

    
 
  

    
      
          
            
  
Device Services


	
class WhoIsIAmServices(Capability)

	This class provides the capability to initiate and respond to
device-address-binding PDUs.


	
do_WhoIsRequest(apdu)

	
	Parameters:

	apdu (WhoIsRequest) – Who-Is Request from the network





See Clause 16.10.1 for the parameters to this service.






	
do_IAmRequest(apdu)

	
	Parameters:

	apdu (IAmRequest) – I-Am Request from the network





See Clause 16.10.3 for the parameters to this service.






	
who_is(self, low_limit=None, high_limit=None, address=None)

	
	Parameters:

	
	low_limit (Unsigned) – optional low limit


	high_limit (Unsigned) – optional high limit


	address (Address) – optional destination, defaults to a global broadcast








This is a utility function that makes it simpler to generate a
WhoIsRequest.






	
i_am(self, address=None)

	
	Parameters:

	address (Address) – optional destination, defaults to a global broadcast





This is a utility function that makes it simpler to generate an
IAmRequest with the contents of the local device object.










	
class WhoHasIHaveServices(Capability)

	This class provides the capability to initiate and respond to
device and object binding PDU’s.


	
do_WhoHasRequest(apdu)

	
	Parameters:

	apdu (WhoHasRequest) – Who-Has Request from the network





See Clause 16.9.1 for the parameters to this service.






	
do_IHaveRequest(apdu)

	
	Parameters:

	apdu (IHaveRequest) – I-Have Request from the network





See Clause 16.9.3 for the parameters to this service.






	
who_has(thing, address=None)

	
	Parameters:

	
	thing – object identifier or object name


	address (Address) – optional destination, defaults to a global broadcast








Not implemented.






	
i_have(thing, address=None)

	
	Parameters:

	
	thing – object identifier or object name


	address (Address) – optional destination, defaults to a global broadcast








This is a utility function that makes it simpler to generate an
IHaveRequest given an object.










Support Classes

There are a few support classes in this module that make it simpler to build
the most common BACnet devices.


	
class CurrentDateProperty(Property)

	This class is a specialized readonly property that always returns the
current date as provided by the operating system.


	
ReadProperty(self, obj, arrayIndex=None)

	Returns the current date as a 4-item tuple consistent with the
Python implementation of the Date primitive value.






	
WriteProperty(self, obj, value, arrayIndex=None, priority=None)

	Object instances of this class are readonly, so this method raises
a writeAccessDenied error.










	
class CurrentTimeProperty(Property)

	This class is a specialized readonly property that always returns the
current local time as provided by the operating system.


	
ReadProperty(self, obj, arrayIndex=None)

	Returns the current date as a 4-item tuple consistent with the
Python implementation of the Time primitive value.






	
WriteProperty(self, obj, value, arrayIndex=None, priority=None)

	Object instances of this class are readonly, so this method raises
a writeAccessDenied error.










	
class LocalDeviceObject(DeviceObject)

	The LocalDeviceObject is an implementation of a
DeviceObject that provides default implementations for common
properties and behaviors of a BACnet device.  It has default values for
communications properties, returning the local date and time, and
the objectList property for presenting a list of the objects in the
device.









          

      

      

    

  

  
    

    Object Services
    

    
 
  

    
      
          
            
  
Object Services


	
class ReadWritePropertyServices(Capability)

	This class provides the capability to respond to ReadProperty and
WriteProperty service, used by a client BACnet-user to request the value
of one property of one BACnet Object.


	
do_ReadPropertyRequest(apdu)

	
	Parameters:

	apdu (ReadPropertyRequest) – request from the network





See Clause 15.5 for the parameters to this service.






	
do_WritePropertyRequest(apdu)

	
	Parameters:

	apdu (WritePropertyRequest) – request from the network





See Clause 15.9 for the parameters to this service.










	
class ReadWritePropertyMultipleServices(Capability)

	This class provides the capability to respond to ReadPropertyMultiple and
WritePropertyMultiple service, used by a client BACnet-user to request the
values of one or more specified properties of one or more BACnet Objects.


	
do_ReadPropertyMultipleRequest(apdu)

	
	Parameters:

	apdu (ReadPropertyRequest) – request from the network





See Clause 15.7 for the parameters to this service.






	
do_WritePropertyMultipleRequest(apdu)

	
	Parameters:

	apdu (WritePropertyMultipleRequest) – request from the network





Not implemented.










Support Functions



	
read_property_to_any(obj, propertyIdentifier, propertyArrayIndex=None):

	
	Parameters:

	
	obj – object


	propertyIdentifier – property identifier


	propertyArrayIndex – optional array index








Called by read_property_to_result_element to build an appropriate
Any result object from the supplied object given the property
identifier and optional array index.






	
read_property_to_result_element(obj, propertyIdentifier, propertyArrayIndex=None):

	
	Parameters:

	
	obj – object


	propertyIdentifier – property identifier


	propertyArrayIndex – optional array index








Called by do_ReadPropertyMultipleRequest to build the result element
components of a ReadPropertyMultipleACK.












          

      

      

    

  

  
    

    File Services
    

    
 
  

    
      
          
            
  
File Services


	
class FileServices(Capability)

	This class provides the capability to read from and write to file objects.


	
do_AtomicReadFileRequest(apdu)

	
	Parameters:

	apdu (AtomicReadFileRequest) – request from the network





This method looks for a local file object by the object identifier
and and passes the request parameters to the implementation of
the record or stream support class instances.






	
do_AtomicWriteFileRequest(apdu)

	
	Parameters:

	apdu (AtomicWriteFileRequest) – request from the network





This method looks for a local file object by the object identifier
and and passes the request parameters to the implementation of
the record or stream support class instances.










Support Classes


	
class LocalRecordAccessFileObject(FileObject)

	This abstract class provides a simplified API for implementing a local
record access file.  A derived class must provide implementations of
these methods for the object to be used by the FileServices.


	
__len__()

	Return the length of the file in records.






	
read_record(start_record, record_count)

	
	Parameters:

	
	start_record (int) – starting record


	record_count (int) – number of records








Return a tuple (eof, record_data) where the record_data is an
array of octet strings.






	
write_record(start_record, record_count, record_data)

	
	Parameters:

	
	start_record (int) – starting record


	record_count (int) – number of records


	record_data – array of octet strings








Update the file with the new records.










	
class LocalStreamAccessFileObject(FileObject)

	This abstract class provides a simplified API for implementing a local
stream access file.  A derived class must provide implementations of
these methods for the object to be used by the FileServices.


	
__len__()

	Return the length of the file in octets.






	
read_stream(start_position, octet_count)

	
	Parameters:

	
	start_position (int) – starting position


	octet_count (int) – number of octets








Return a tuple (eof, record_data) where the record_data is an
array of octet strings.






	
write_stream(start_position, data)

	
	Parameters:

	
	start_position (int) – starting position


	data – octet string








Update the file with the new records.










	
class FileServicesClient(Capability)

	This class adds a set of functions to the application that provides a
simplified client API for reading and writing to files.  It is not currently
implemented.









          

      

      

    

  

  
    

    Detect
    

    
 
  

    
      
          
            
  
Detect

This is a long line of text.


Classes


	
class detect.DetectionMonitor

	
	
algorithm

	




	
parameter

	




	
obj

	




	
prop

	




	
filter

	




	
__init__(algorithm, parameter, obj, prop, filter=None)

	This is a long line of text.






	
property_change(old_value, new_value)

	This is a long line of text.










	
class detect.DetectionAlgorithm

	
	
_monitors

	This private attribute is a list of DetectionMonitor objects that
associate this algorithm instance with objects and properties.






	
_triggered

	This private attribute is True when there is a change in a parameter
which causes the algorithm to schedule itself to execute.  More than
one parameter may change between the times that the algorithm can
execute.






	
__init__()

	Initialize a detection algorithm, which simply initializes the
instance attributes.






	
bind(**kwargs)

	
	Parameters:

	kwargs (tuple) – parameter to property mapping





Create a DetectionMonitor instance for each of the keyword arguments
and point it back to this algorithm instance.  The algorithm parameter
matches the keyword parameter name and the parameter value is an
(object, property_name) tuple.






	
unbind()

	Delete the DetectionMonitor objects associated with this algorithm
and remove them from the property changed call list(s).






	
execute()

	This function is provided by a derived class which checks to see if
something should happen when its parameters have changed.  For example,
maybe a change-of-value or event notification should be generated.






	
_execute()

	This method is a special wrapper around the execute() function
that sets the internal trigger flag.  When the flag is set then the
execute() function is already scheduled to run (via deferred())
and doesn’t need to be scheduled again.











Decorators


	
detect.monitor_filter(parameter)

	
	Parameters:

	parameter (string) – name of parameter to filter





This decorator is used with class methods of an algorithm to determine
if the new value for a propert of an object is significant enough to
consider the associated parameter value changed.  For example:

class SomeAlgorithm(DetectionAlgorithm):

    @monitor_filter('pValue')
    def value_changed(self, old_value, new_value):
        return new_value > old_value + 10





Assume that an instance of this algorithm is bound to the presentValue
of an AnalogValueObject:

some_algorithm = SomeAlgorithm()
some_algorithm.bind(pValue = (avo, 'presentValue'))





The algorithm parameter pValue will only be considered changed when
the present value of the analog value object has increased by more than
10 at once.  If it slowly climbs by something less than 10, or declines
at all, the algorithm will not execute.









          

      

      

    

  

  
    

    Change of Value (COV) Services
    

    
 
  

    
      
          
            
  
Change of Value (COV) Services


	
class ChangeOfValueServices(Capability)

	This class provides the capability of managing COV subscriptions and
initiating COV notifications.


	
do_SubscribeCOVRequest(apdu):

	
	Parameters:

	apdu (SubscribeCOVRequest) – request from the network





This method processes the request by looking up the referenced object
and attaching a COV detection algorithm object.  Any changes the to
referenced object properties (such as presentValue to statusFlags)
will trigger the algorithm to run and initiate COV notifications as
necessary.






	
add_subscription(cov)

	This method adds a subscription to the internal dictionary of subscriptions
indexed by the object reference.  There can be multiple COV subscriptions
for the same object.






	
cancel_subscription(cov)

	This method removes a subscription from the internal dictionary of
subscriptions.  If all of the subscriptinos have been removed, for
example they have all expired, then the detection “hook” into the
object is removed.






	
cov_notification(cov, request)

	This method is used to wrap a COV notification request in an
IOCB wrapper, submitting it as an IO request.  The following confirmation
function will be called when it is complete.






	
cov_confirmation(iocb)

	This method looks at the response that was given to the COV notification
and dispatchs one of the following functions.






	
cov_ack(cov, request, response)

	This method is called when the client has responded with a simple
acknowledgement.






	
cov_error(cov, request, response)

	This method is called when the client has responded with an error.
Depending on the error, the COV subscription might be canceled.






	
cov_reject(cov, request, response)

	This method is called when the client has responded with a reject.
Depending on the error, the COV subscription might be canceled.






	
cov_abort(cov, request, response)

	This method is called when the client has responded with an abort.
Depending on the error, the COV subscription might be canceled.










Support Classes


	
class ActiveCOVSubscriptions(Property)

	An instance of this property is added to the local device object.  When
the property is read it will return a list of COVSubscription objects.






	
class SubscriptionList

	
	
append(cov)

	
	Parameters:

	cov (Subscription) – additional subscription










	
remove(cov)

	
	Parameters:

	cov (Subscription) – subscription to remove










	
find(client_addr, proc_id, obj_id)

	
	Parameters:

	
	client_addr (Address) – client address


	proc_id (int) – client process identifier


	obj_id (ObjectIdentifier) – object identifier








This method finds a matching Subscription object where all three
parameters match.  It is used when a subscription request arrives
it is used to determine if it should be renewed or canceled.










	
class Subscription(OneShotTask)

	Instances of this class are active subscriptions with a lifetime.  When the
subscription is created it “installs” itself as a task for the end of its
lifetime and when the process_task function is called the subscription
is canceled.


	
__init__(obj_ref, client_addr, proc_id, obj_id, confirmed, lifetime)

	
	Parameters:

	
	obj_ref – reference to the object being monitored


	client_addr – address of the client


	proc_id – process id of the client


	obj_id – object identifier


	confirmed – issue confirmed notifications


	lifetime – subscription lifetime













	
cancel_subscription()

	This method is called to cancel a subscription, it is called by
process_task.






	
renew_subscription(lifetime)

	
	Parameters:

	lifetime (int) – seconds until expiration





This method is called to renew a subscription.






	
process_task()

	Call when the lifetime of the subscription has run out.










	
class COVDetection(DetectionAlgorithm)

	This is a base class for a series of COV detection algorithms.  The derived
classes provide a list of the properties that are being monitored for
changes and a list of properties that are reported.


	
execute()

	This method overrides the execute function of the detection algorithm.






	
send_cov_notifications()

	This method sends out notifications to all of the subscriptions
that are associated with the algorithm.










	
class GenericCriteria(COVDetection)

	This is the simplest detection algorithm that monitors the present value
and status flags of an object.






	
class COVIncrementCriteria(COVDetection)

	This detection algorithm is used for those objects that have a COV increment
property, such as Analog Value Objects, where the change in the present
value needs to exceed some delta value.






	
class AccessDoorCriteria(COVDetection)

	This detection algorithm is used for Access Door Objects.






	
class AccessPointCriteria(COVDetection)

	This detection algorithm is used for Access Point Objects.






	
class CredentialDataInputCriteria(COVDetection)

	This detection algorithm is used for Credential Data Input Objects.






	
class LoadControlCriteria(COVDetection)

	This detection algorithm is used for Load Control Objects.






	
class PulseConverterCriteria(COVDetection)

	This detection algorithm is used for Pulse Converter Objects.









          

      

      

    

  

  
    

    Analysis of PCAP Files
    

    
 
  

    
      
          
            
  
Analysis of PCAP Files

This is a long line of text.


Functions


	
analysis.strftimestamp(ts)

	
	Parameters:

	ts – timestamp





This is a long line of text.







Decoders

This is a long line of text.


	
analysis.decode_ethernet(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_vlan(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_ip(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_udp(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_udp(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_packet(s)

	
	Parameters:

	s – packet string





This is a long line of text.






	
analysis.decode_file(fname)

	
	Parameters:

	name – pcap file name





This is a long line of text.







Tracing

This is a long line of text.


	
class analysis.Tracer

	
	
currentState

	This is a long line of text.






	
__init__(initialState=None)

	
	Parameters:

	initialState – initial state function





This is a long line of text.






	
Start(pkt)

	
	Parameters:

	pkt – packet





This is a long line of text.






	
Next(pkt)

	
	Parameters:

	pkt – packet





This is a long line of text.










	
analysis.trace(fname, tracers)

	
	Parameters:

	
	fname – pcap file name


	tracers – list of tracer classes








This is a long line of text.









          

      

      

    

  

  
    

    Capability
    

    
 
  

    
      
          
            
  
Capability

Something here.


Classes


	
class capability.Capability

	
	
_zIndex

	Capability functions are ordered by this attribute.










	
class capability.Collector

	
	
capabilities

	A list of Capability derived classes that are in the inheritance
graph.






	
__init__()

	At initialization time the collector searches through the inheritance
graph and builds the list of Capability derived classes and then
calls the __init__() method for each of them.






	
capability_functions(fn)

	
	Parameters:

	fn (string) – name of a capability function





A generator that yields all of the functions of the Capability classes
with the given name, ordered by z-index.






	
add_capability(cls)

	
	Parameters:

	cls (class) – add a Capability derived class





Add a Capability derived class to the method resolution order of the
object.  This will give the object a new value for its __class__
attribute.  The __init__() method will also be called with the
object instance.

This new capability will only be given to the object, no other objects
with the same type will be given the new capability.






	
_search_capability(base)

	This private method returns a flatten list of all of the Capability
derived classes, including other Collector classes that might be in
the inheritance graph using recursion.











Functions


	
capability.compose_capability(base, *classes)

	
	Parameters:

	
	base (Collector) – Collector derived class


	classes (Capability) – Capability derived classes








Create a new class composed of the base collector and the provided
capability classes.






	
capability.add_capability(base, *classes)

	
	Parameters:

	
	base (Collector) – Collector derived class


	classes (Capability) – Capability derived classes








Add a capability derived class to a collector base.


Note

Objects that were created before the additional capabilities were
added will have the new capability, but the __init__() functions
of the classes will not be called.

Objects created after the additional capabilities were added will
have the additional capabilities with the __init__() functions called.


  
    

    Command Logging
    

    
 
  

    
      
          
            
  
Command Logging

The follow set of classes are used to provide access to the defined loggers as
a client or a service.  For example, instances of these classes can be stacked
on top of a UDP or TCP director to provide debugging to remote devices or to
BACpypes applications running as a daemon where there is no interactive command
capability.


	
class commandlogging.CommandLoggingHandler(logging.Handler)

	This is a long line of text.


	
__init__(self, commander, destination, loggerName)

	
	Parameters:

	
	commander – record to format


	destination – record to format


	loggerName – record to format








This is a long line of text.






	
emit(self, record)

	
	Parameters:

	commander – record to format





This is a long line of text.










	
class commandlogging.CommandLogging(Logging)

	This is a long line of text.


	
handlers

	This is a long line of text.






	
process_command(self, cmd, addr)

	
	Parameters:

	
	cmd – command message to be processed


	addr – address of source of request/response








This is a long line of text.






	
emit(self, msg, addr)

	
	Parameters:

	
	msg – message to send


	addr – address to send request/response








This is a long line of text.










	
class commandlogging.CommandLoggingServer(CommandLogging, Server, Logging)

	This is a long line of text.


	
indication(pdu)

	
	Parameters:

	pdu – command message to be processed





This is a long line of text.






	
emit(self, msg, addr)

	
	Parameters:

	
	msg – message to send


	addr – address to send response








This is a long line of text.










	
class commandlogging.CommandLoggingClient(CommandLogging, Client, Logging)

	This is a long line of text.


	
confirmation(pdu)

	
	Parameters:

	pdu – command message to be processed





This is a long line of text.






	
emit(self, msg, addr)

	
	Parameters:

	
	msg – message to send


	addr – address to send request








This is a long line of text.












          

      

      

    

  

  
    

    IO Control Block
    

    
 
  

    
      
          
            
  
IO Control Block

The IO Control Block (IOCB) is a data structure that is used to store parameters
for some kind of processing and then used to retrieve the results of that
processing at a later time.  An IO Controller (IOController) is the executor
of that processing.

They are modeled after the VAX/VMS IO subsystem API in which a single function
could take a wide variety of combinations of parameters and the application
did not necessarily wait for the operation to complete, but could be notified
when it was by an event flag or semaphore.  It could also provide a callback
function to be called when processing was complete.

For example, given a simple function call:

result = some_function(arg1, arg2, kwarg1=1)





The IOCB would contain the arguments and keyword arguments, the some_function()
would be the controller, and the result would alo be stored in the IOCB when
the function is complete.

If the IOController encountered an error during processing, some value specifying
the error is also stored in the IOCB.


Classes

There are two fundamental classes in this module, the IOCB for bundling
request parameters together and processing the result, and IOController
for executing requests.

The IOQueue is an object that manages a queue of IOCB requests when
some functionality needs to be processed one at a time, and an IOQController
which has the same signature as an IOController but takes advantage of a queue.

The IOGroup is used to bundle a collection of requests together that
may be processed by separate controllers at different times but has wait()
and add_callback() functions and can be otherwise treated as an IOCB.


	
class iocb.IOCB

	The IOCB contains a unique identifier, references to the arguments and
keyword arguments used when it was constructed, and placeholders for
processing results or errors.


	
ioID

	Every IOCB has a unique identifier that persists for the lifetime of
the block.  Similar to the Invoke ID for confirmed services, it can be used
to synchronize communications and related functions.

The default identifier value is a thread safe monotonically increasing
value.






	
args, kwargs

	These are copies of the arguments and keyword arguments passed during the
construction of the IOCB.






	
ioState

	The ioState of an IOCB is the state of processing for the block.



	idle - an IOCB is idle when it is first constructed and before it has been given to a controller.


	pending - the IOCB has been given to a controller but the processing of the request has not started.


	active - the IOCB is being processed by the controller.


	completed - the processing of the IOCB has completed and the positive results have been stored in ioResponse.


	aborted - the processing of the IOCB has encountered an error of some kind and the error condition has been stored in ioError.












	
ioResponse

	The result that some controller is providing to the application that
created the IOCB.






	
ioError

	The error condition that the controller is providing when the processing
resulted in an error.






	
__init__(*args, **kwargs)

	
	Parameters:

	
	args – arbitrary arguments


	kwargs – arbitrary keyword arguments








Create an IOCB and store the arguments and keyword arguments in it.  The
IOCB will be given a unique identifier and start in the idle state.






	
complete(msg)

	
	Parameters:

	msg – positive result of request










	
abort(msg)

	
	Parameters:

	msg – negative results of request










	
trigger()

	This method is called by complete() or abort() after the positive or
negative result has been stored in the IOCB.






	
wait(*args)

	
	Parameters:

	args – arbitrary arguments





Block until the IO operation is complete and the positive or negative
result has been placed in the ICOB.  The arguments are passed to the
wait() function of the ioComplete event.






	
add_callback(fn, *args, **kwargs)

	
	Parameters:

	
	fn – the function to call when the IOCB is triggered


	args – additional arguments passed to the function


	kwargs – additional keyword arguments passed to the function








Add the function fn to a list of functions to call when the IOCB is
triggered because it is complete or aborted.  When the function is
called the first parameter will be the IOCB that was triggered.

An IOCB can have any number of callback functions added to it and they
will be called in the order they were added to the IOCB.

If the IOCB is has already been triggered then the callback function
will be called immediately.  Callback functions are typically added
to an IOCB before it is given to a controller.






	
set_timeout(delay, err=TimeoutError)

	
	Parameters:

	
	delay (seconds) – the time limit for processing the IOCB


	err – the error to use when the IOCB is aborted








Set a time limit on the amount of time an IOCB can take to be completed,
and if the time is exceeded then the IOCB is aborted.










	
class iocb.IOController

	An IOController is an API for processing an IOCB.  It has one method
process_io() provided by a derived class which will be called for each IOCB
that is requested of it.  It calls one of its complete_io() or abort_io()
functions as necessary to satisfy the request.

This class does not restrict a controller from processing more than one
IOCB simultaneously.


	
request_io(iocb)

	
	Parameters:

	iocb – the IOCB to be processed





This method is called by the application requesting the service of a
controller.






	
process_io(iocb)

	
	Parameters:

	iocb – the IOCB to be processed





The implementation of process_io() should be written using “functional
programming” principles by not modifying the arguments or keyword arguments
in the IOCB, and without side effects that would require the application
using the controller to submit IOCBs in a particular order.  There may be
occasions following a “remote procedure call” model where the application
making the request is not in the same process, or even on the same machine,
as the controller providing the functionality.






	
active_io(iocb)

	
	Parameters:

	iocb – the IOCB being processed





This method is called by the derived class when it would like to signal
to other types of applications that the IOCB is being processed.






	
complete_io(iocb, msg)

	
	Parameters:

	
	iocb – the IOCB to be processed


	msg – the message to be returned








This method is called by the derived class when the IO processing is
complete.  The msg, which may be None, is put in the ioResponse
attribute of the IOCB which is then triggered.

IOController derived classes should call this function rather than
the complete() function of the IOCB.






	
abort_io(iocb, msg)

	
	Parameters:

	
	iocb – the IOCB to be processed


	msg – the error to be returned








This method is called by the derived class when the IO processing has
encountered an error.  The msg is put in the ioError
attribute of the IOCB which is then triggered.

IOController derived classes should call this function rather than
the abort() function of the IOCB.






	
abort(err)

	
	Parameters:

	msg – the error to be returned





This method is called to abort all of the IOCBs associated with the
controller.  There is no default implementation of this method.










	
class iocb.IOQueue

	An IOQueue is simply a first-in-first-out priority queue of IOCBs, but the
IOCBs are modified to know that they can been queued.  If an IOCB is aborted
before being retrieved from the queue, it will ask the queue to remove it.


	
put(iocb)

	
	Parameters:

	iocb – add an IOCB to the queue










	
get(block=1, delay=None)

	
	Parameters:

	
	block – wait for an IOCB to be available in the queue


	delay – maximum time to wait for an IOCB








The get() request returns the next IOCB in the queue and waits for one
if there are none available.  If block is false and the queue is
empty, it will return None.






	
remove(iocb)

	
	Parameters:

	iocb – an IOCB to remove from the queue





Removes an IOCB from the queue.  If the IOCB is not in the queue, no
action is performed.






	
abort(err)

	
	Parameters:

	msg – the error to be returned





This method is called to abort all of the IOCBs in the queue.










	
class iocb.IOQController

	An IOQController has an identical interface as the IOContoller, but
provides additional hooks to make sure that only one IOCB is being processed
at a time.


	
request_io(iocb)

	
	Parameters:

	iocb – the IOCB to be processed





This method is called by the application requesting the service of a
controller.  If the controller is already busy processing a request,
this IOCB is queued until the current processing is complete.






	
process_io(iocb)

	
	Parameters:

	iocb – the IOCB to be processed





Provided by a derived class, this is identical to IOController.process_io.






	
active_io(iocb)

	
	Parameters:

	iocb – the IOCB to be processed





Called by a derived class, this is identical to IOController.active_io.






	
complete_io(iocb, msg)

	
	Parameters:

	iocb – the IOCB to be processed





Called by a derived class, this is identical to IOController.complete_io.






	
abort_io(iocb, msg)

	
	Parameters:

	iocb – the IOCB to be processed





Called by a derived class, this is identical to IOController.abort_io.






	
abort(err)

	
	Parameters:

	msg – the error to be returned





This method is called to abort all of the IOCBs associated with the
controller.  All of the pending IOCBs will be aborted with this error.










	
class iocb.IOGroup(IOCB)

	An IOGroup is like a set that is an IOCB.  The group will complete
when all of the IOCBs that have been added to the group are complete.


	
add(iocb)

	
	Parameters:

	iocb – an IOCB to include in the group





Adds an IOCB to the group.






	
abort(err)

	
	Parameters:

	err – the error to be returned





This method is call to abort all of the IOCBs that are members of
the group.






	
group_callback(iocb)

	: param iocb: the member IOCB that has completed

This method is added as a callback to all of the IOCBs that are added
to the group and it is called when each one completes.  Its purpose
is to check to see if all of the IOCBs have completed and if they
have, trigger the group as completed.










	
class iocb.IOChainMixIn

	The IOChainMixIn class adds an additional API to things that act like
an IOCB and can be mixed into the inheritance chain for translating
requests from one form to another.


	
__init__(iocb)

	
	Parameters:

	iocb – the IOCB to chain from





Create an object that is chained from some request.






	
encode()

	This method is called to transform the arguments and keyword arguments
into something suitable for the other controller.  It is typically
overridden by a derived class to perform this function.






	
decode()

	This method is called to transform the result or error returned by
the other controller into something suitable to return.  It is typically
overridden by a derived class to perform this function.






	
chain_callback(iocb)

	
	Parameters:

	iocb – the IOCB that has completed, which is itself





When a chained IOCB has completed, the results are translated or
decoded for the next higher level of the application.  The iocb
parameter is redundant because the IOCB becomes its own controller,
but the callback API requires the parameter.






	
abort_io(iocb, err)

	
	Parameters:

	
	iocb – the IOCB that is being aborted


	err – the error to be used as the abort reason








Call this method to abort the IOCB, which will in turn cascade the
abort operation to the chained IOCBs.  This has the same function
signature that is used by an IOController because this instance
becomes its own controller.










	
class iocb.IOChain(IOCB, IOChainMixIn)

	An IOChain is a class that is an IOCB that includes the IOChain API.
Chains are used by controllers when they need the services of some other
controller and results need to be processed further.

Controllers that operate this way are similar to an adapter, they take
arguments in one form, encode them in some way in an IOCB, pass it to the
other controller, then decode the results.






	
class iocb.ClientController(Client, IOQController)

	An instance of this class is a controller that sits at the top of a
protocol stack as a client.  The IOCBs to be processed contain a single
PDU parameter that is sent down the stack.  Any PDU coming back up
the stack is assumed to complete the current request.

This class is used for protocol stacks with a strict master/slave
architecture.

This class inherits from IOQController so if there is already an active
request then subsequent requests are queued.






	
class iocb._SieveQueue(IOQController)

	This is a special purpose controller used by the SieveClientController
to serialize requests for the same source/destination address.






	
class iocb.SieveClientController(Client, IOController)

	Similar to the ClientController, this class is a controller that also
sits at the top of a protocol stack as a client.  The IOCBs to be processed
contain a single PDU parameter with a pduDestination address.  Unlike
the ClientController, this class creates individual queues for each
destination address so it can process multiple requests simultaneously while
maintaining a strict master/slave relationship with each address.

When an upstream PDU is received, the pduSource address is used to
associate this response with the correct request.







Functions


	
iocb.register_controller(controller)

	
	Parameters:

	controller – controller to register





The module keeps a dictionary of “registered” controllers so that other
parts of the application can find the controller instance.  For example,
if an HTTP controller provided a GET service and it was registered then
other parts of the application could take advantage of the service the
controller provides.









          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   a | 
   b | 
   c | 
   d | 
   e | 
   i | 
   n | 
   o | 
   p | 
   s | 
   t | 
   u | 
   v
   


   
     		 	

     		
       a	

     
       	
       	
       analysis	
       

     
       	
       	
       apdu	
       

     
       	
       	
       app	
       

     
       	
       	
       appservice	
       

     		 	

     		
       b	

     
       	
       	
       basetypes	
       

     
       	
       	
       bsll	
       

     
       	
       	
       bsllservice	
       

     
       	
       	
       bvll	
       

     		 	

     		
       c	

     
       	
       	
       capability	
       

     
       	
       	
       comm	
       

     
       	
       	
       commandlogging	
       

     
       	
       	
       consolecmd	
       

     
       	
       	
       consolelogging	
       

     
       	
       	
       constructeddata	
       

     
       	
       	
       core	
       

     		 	

     		
       d	

     
       	
       	
       debugging	
       

     
       	
       	
       detect	
       

     		 	

     		
       e	

     
       	
       	
       errors	
       

     
       	
       	
       event	
       

     		 	

     		
       i	

     
       	
       	
       iocb	
       

     		 	

     		
       n	

     
       	
       	
       netservice	
       

     
       	
       	
       npdu	
       

     		 	

     		
       o	

     
       	
       	
       object	
       

     		 	

     		
       p	

     
       	
       	
       pdu	
       

     
       	
       	
       primitivedata	
       

     		 	

     		
       s	

     
       	
       	
       singleton	
       

     		 	

     		
       t	

     
       	
       	
       task	
       

     
       	
       	
       tcp	
       

     		 	

     		
       u	

     
       	
       	
       udp	
       

     		 	

     		
       v	

     
       	
       	
       vlan	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


_


  	
      	__cmp__() (primitivedata.Atomic method)

      
        	(primitivedata.Enumerated method)


        	(primitivedata.ObjectIdentifier method)


      


      	__del__() (event.WaitableEvent method)


      	__delitem__() (constructeddata.ArrayOf method)


      	__eq__() (pdu.Address method)

      
        	(primitivedata.Tag method)


      


      	__getitem__() (constructeddata.ArrayOf method)

      
        	(constructeddata.SequenceOf method)


        	(primitivedata.BitString method)


        	(primitivedata.Enumerated method)


      


      	__hash__() (pdu.Address method)

      
        	(primitivedata.ObjectIdentifier method)


      


      	__init__() (analysis.Tracer method)

      
        	(Subscription method)


        	(app.Application method)


        	(app.BIPForeignApplication method)


        	(app.BIPNetworkApplication method)


        	(app.BIPSimpleApplication method)


        	(app.DeviceInfo method)


        	(appservice.SSM method)


        	(bsllservice.ProxyClientService method)


        	(bsllservice.ServiceAdapter method)


        	(bsllservice.TCPClientMultiplexer method)


        	(bsllservice.TCPMultiplexerASE method)


        	(bsllservice.TCPServerMultiplexer method)


        	(bsllservice.UserInformation method)


        	(bvll.BIPBBMD method)


        	(bvll.BIPSAP method)


        	(bvll.BTR method)


        	(bvll.UDPMultiplexer method)


        	(bvll._MultiplexClient method)


        	(bvll._MultiplexServer method)


        	(capability.Collector method)


        	(comm.PCI method)


        	(commandlogging.CommandLoggingHandler method)


        	(consolecmd.ConsoleCmd method)


        	(constructeddata.Any method)


        	(constructeddata.Choice method)


        	(debugging.LoggingFormatter method)


        	(detect.DetectionAlgorithm method)


        	(detect.DetectionMonitor method)


        	(event.WaitableEvent method)


        	(iocb.IOCB method)


        	(iocb.IOChainMixIn method)


        	(primitivedata.Date method)


        	(primitivedata.ObjectIdentifier method)


        	(primitivedata.Tag method)


        	(primitivedata.Time method)


        	(tcp.TCPClient method)


        	(tcp.TCPClientActor method)


        	(tcp.TCPClientDirector method)


        	(tcp.TCPServer method)


        	(tcp.TCPServerActor method)


        	(tcp.TCPServerDirector method)


        	(udp.UDPActor method)


        	(udp.UDPDirector method)


        	(vlan.Network method)


        	(vlan.Node method)


      


  

  	
      	__len__() (constructeddata.ArrayOf method)

      
        	(LocalRecordAccessFileObject method)


        	(LocalStreamAccessFileObject method)


        	(constructeddata.SequenceOf method)


        	(vlan.Network method)


      


      	__ne__() (pdu.Address method)

      
        	(primitivedata.Tag method)


      


      	__repr__() (pdu.Address method)

      
        	(primitivedata.Tag method)


      


      	__setitem__() (constructeddata.ArrayOf method)

      
        	(primitivedata.BitString method)


      


      	__str__() (pdu.Address method)


      	_APDU (class in apdu)


      	_app_tag_class (primitivedata.Tag attribute)


      	_app_tag_name (primitivedata.Tag attribute)


      	_debug_contents (debugging.DebugContents attribute)


      	_execute() (detect.DetectionAlgorithm method)


      	_monitors (detect.DetectionAlgorithm attribute)


      	_MultiplexClient (class in bvll)


      	_MultiplexServer (class in bvll)


      	_Packetize() (in module bsllservice)


      	_response() (udp.UDPDirector method)


      	_root (in module debugging)


      	_search_capability() (capability.Collector method)


      	_SieveQueue (class in iocb)


      	_StreamToPacket (class in bsllservice)


      	_Task (class in task)


      	_task_manager (in module task)


      	_triggered (detect.DetectionAlgorithm attribute)


      	_unscheduled_tasks (in module task)


      	_xlate_table (primitivedata.Enumerated attribute)


      	_zIndex (capability.Capability attribute)


  





A


  	
      	abort() (iocb.IOCB method)

      
        	(iocb.IOController method)


        	(iocb.IOGroup method)


        	(iocb.IOQController method)


        	(iocb.IOQueue method)


      


      	abort_io() (iocb.IOChainMixIn method)

      
        	(iocb.IOController method)


        	(iocb.IOQController method)


      


      	AccessChallenge (class in bsll)


      	AccessDoorCriteria (built-in class)


      	AccessPointCriteria (built-in class)


      	AccessRequest (class in bsll)


      	AccessResponse (class in bsll)


      	accessState (bsllservice.ConnectionState attribute)


      	AccumulatorObject (class in object)


      	active_io() (iocb.IOController method)

      
        	(iocb.IOQController method)


      


      	ActiveCOVSubscriptions (built-in class)


      	actualWindowSize (appservice.SSM attribute)


      	adapter (netservice.RouterReference attribute)


      	add() (iocb.IOGroup method)


      	add_callback() (iocb.IOCB method)


      	add_capability() (capability.Collector method)

      
        	(in module capability)


      


      	add_connection() (bsllservice.ProxyServerService method)

      
        	(bsllservice.RouterToRouterService method)


        	(bsllservice.ServiceAdapter method)


      


      	add_device_info() (app.DeviceInfoCache method)


      	add_node() (vlan.Network method)


      	add_object() (app.Application method)


      	add_peer() (bvll.BIPBBMD method)

      
        	(bvll.BTR method)


      


      	add_subscription() (ChangeOfValueServices method)


      	AddActor() (tcp.TCPClientDirector method)

      
        	(tcp.TCPServerDirector method)


        	(udp.UDPDirector method)


      


      	addrAddr (pdu.Address attribute)

      
        	(vlan.Network attribute)


      


      	address (app.DeviceInfo attribute)

      
        	(bsllservice.ConnectionState attribute)


      


      	Address (class in pdu)


      	address (netservice.RouterReference attribute)


      	addrLen (pdu.Address attribute)

      
        	(vlan.Network attribute)


      


  

  	
      	addrNet (pdu.Address attribute)


      	addrType (pdu.Address attribute)


      	algorithm (detect.DetectionMonitor attribute)


      	AnalogInputObject (class in object)


      	AnalogOutputObject (class in object)


      	AnalogValueObject (class in object)


      	analysis (module)


      	Any (class in constructeddata)


      	APCI (class in apdu)


      	APCISequence (class in apdu)


      	APDU (class in apdu)


      	apdu (module)


      	apdu_types (in module apdu)


      	apduAbortRejectReason (apdu.APCI attribute)


      	apduInvokeID (apdu.APCI attribute)


      	apduMaxResp (apdu.APCI attribute)


      	apduMaxSegs (apdu.APCI attribute)


      	apduMor (apdu.APCI attribute)


      	apduNak (apdu.APCI attribute)


      	apduSA (apdu.APCI attribute)


      	apduSeg (apdu.APCI attribute)


      	apduSeq (apdu.APCI attribute)


      	apduService (apdu.APCI attribute)


      	apduSrv (apdu.APCI attribute)


      	apduType (apdu.APCI attribute)


      	apduWin (apdu.APCI attribute)


      	app (module)


      	app_to_context() (primitivedata.Tag method)


      	app_to_object() (primitivedata.Tag method)


      	append() (constructeddata.ArrayOf method)

      
        	(SubscriptionList method)


        	(constructeddata.SequenceOf method)


      


      	append_segment() (appservice.SSM method)


      	Application (class in app)


      	ApplicationServiceAccessPoint (class in appservice)


      	ApplicationServiceElement (class in comm)


      	ApplicationTag (class in primitivedata)


      	appservice (module)


      	Array (class in constructeddata)


      	ArrayOf (class in constructeddata)


      	ArrayOfObjectIdentifier (class in basetypes)


      	Atomic (class in primitivedata)


      	authentication_required() (bsllservice.ServiceAdapter method)


      	AveragingObject (class in object)


  





B


  	
      	BACnetAccumulatorRecord (class in object)


      	BACnetAccumulatorStatus (class in basetypes)


      	BACnetAction (class in basetypes)


      	BACnetActionCommand (class in basetypes)


      	BACnetActionList (class in basetypes)


      	BACnetAddress (class in basetypes)


      	BACnetAddressBinding (class in basetypes)


      	BACnetBinaryPV (class in basetypes)


      	BACnetCalendarEntry (class in basetypes)


      	BACnetDailySchedule (class in basetypes)


      	BACnetDateRange (class in basetypes)


      	BACnetDateTime (class in basetypes)


      	BACnetDaysOfWeek (class in basetypes)


      	BACnetDestination (class in basetypes)


      	BACnetDeviceObjectReference (class in basetypes)


      	BACnetDeviceStatus (class in basetypes)


      	BACnetEngineeringUnits (class in basetypes)


      	BACnetEventState (class in basetypes)


      	BACnetEventTransitionBits (class in basetypes)


      	BACnetEventType (class in basetypes)


      	BACnetFileAccessMethod (class in basetypes)


      	BACnetLifeSafetyMode (class in basetypes)


      	BACnetLimitEnable (class in basetypes)


      	BACnetNodeType (class in basetypes)


      	BACnetNotificationParameters (class in basetypes)


      	BACnetNotifyType (class in basetypes)


      	BACnetObjectPropertyReference (class in basetypes)


      	BACnetObjectPropertyValue (class in basetypes)


      	BACnetObjectType (class in basetypes)


      	BACnetObjectTypesSupported (class in basetypes)


      	BACnetPolarity (class in basetypes)


      	BACnetPrescale (class in basetypes)


      	BACnetPriorityArray (class in basetypes)


      	BACnetPriorityValue (class in basetypes)


      	BACnetProgramError (class in basetypes)


      	BACnetProgramRequest (class in basetypes)


      	BACnetProgramState (class in basetypes)


      	BACnetPropertyIdentifier (class in basetypes)


      	BACnetPropertyReference (class in basetypes)


      	BACnetPropertyStates (class in basetypes)


      	BACnetPropertyValue (class in basetypes)


      	BACnetRecipient (class in basetypes)


      	BACnetRecipientProcess (class in basetypes)


      	BACnetReliability (class in basetypes)


      	BACnetResultFlags (class in basetypes)


      	BACnetScale (class in basetypes)


      	BACnetSegmentation (class in basetypes)


  

  	
      	BACnetServicesSupported (class in basetypes)


      	BACnetSessionKey (class in basetypes)


      	BACnetSetpointReference (class in basetypes)


      	BACnetSpecialEvent (class in basetypes)


      	BACnetStatusFlags (class in basetypes)


      	BACnetTimeStamp (class in basetypes)


      	BACnetTimeValue (class in basetypes)


      	BACnetVTClass (class in basetypes)


      	BACnetVTSession (class in basetypes)


      	BACnetWeekNDay (class in basetypes)


      	basetypes (module)


      	BinaryInputObject (class in object)


      	BinaryOutputObject (class in object)


      	BinaryValueObject (class in object)


      	bind() (detect.DetectionAlgorithm method)

      
        	(in module comm)


        	(vlan.Node method)


      


      	BIPBBMD (class in bvll)


      	BIPForeign (class in bvll)


      	BIPForeignApplication (class in app)


      	BIPNetworkApplication (class in app)


      	BIPSAP (class in bvll)


      	BIPSimple (class in bvll)


      	BIPSimpleApplication (class in app)


      	BitString (class in primitivedata)


      	Boolean (class in primitivedata)


      	BSLCI (class in bsll)


      	bslciFunction (bsll.BSLCI attribute)


      	bslciLength (bsll.BSLCI attribute)


      	bslciResultCode (bsll.Result attribute)


      	bslciType (bsll.BSLCI attribute)


      	bsll (module)


      	bsllservice (module)


      	BSLPDU (class in bsll)


      	BTR (class in bvll)


      	
    buggers

      
        	command line option


      


      	
    bugin <name>

      
        	command line option


      


      	
    bugout <name>

      
        	command line option


      


      	BVLCI (class in bvll)


      	bvlciFunction (bvll.BVLCI attribute)


      	bvlciLength (bvll.BVLCI attribute)


      	bvlciType (bvll.BVLCI attribute)


      	bvll (module), [1]


      	BVLLServiceElement (class in bvll)


      	BVLPDU (class in bvll)


  





C


  	
      	cache (app.DeviceInfoCache attribute)


      	CalcDayOfWeek() (primitivedata.Date method)


      	CalendarObject (class in object)


      	cancel_subscription() (ChangeOfValueServices method)

      
        	(Subscription method)


      


      	capabilities (capability.Collector attribute)


      	Capability (class in capability)


      	capability (module)


      	capability_functions() (capability.Collector method)


      	cast_in() (constructeddata.Any method)


      	cast_out() (constructeddata.Any method)


      	chain_callback() (iocb.IOChainMixIn method)


      	challenge (bsllservice.ConnectionState attribute)


      	ChangeListError (class in apdu)


      	ChangeOfValueServices (built-in class)


      	CharacterString (class in primitivedata)


      	Choice (class in constructeddata)


      	clear() (event.WaitableEvent method)


      	Client (class in comm)


      	client_map (in module comm)


      	ClientController (class in iocb)


      	ClientToLESBroadcastNPDU (class in bsll)


      	ClosingTag (class in primitivedata)


      	Collector (class in capability)


      	comm (module)


      	
    command line option

      
        	buggers


        	bugin <name>


        	bugout <name>


        	exit


        	gc


        	help


      


      	CommandLogging (class in commandlogging)


      	commandlogging (module)


      	CommandLoggingClient (class in commandlogging)


      	CommandLoggingHandler (class in commandlogging)


      	CommandLoggingServer (class in commandlogging)


      	CommandObject (class in object)


      	complete() (iocb.IOCB method)


      	complete_io() (iocb.IOController method)

      
        	(iocb.IOQController method)


      


      	complex_ack_types (in module apdu)


      	ComplexAckPDU (class in apdu)


      	ComplexAckSequence (class in apdu)


      	compose_capability() (in module capability)


      	ConfigurationError (class in errors)


      	confirmation() (bsllservice.ProxyClientService method)

      
        	(bsllservice.TCPClientMultiplexer method)


        	(bsllservice.TCPServerMultiplexer method)


        	(bvll.BIPBBMD method)


        	(bvll.BIPForeign method)


        	(bvll.BIPSimple method)


        	(bvll.BTR method)


        	(bvll.BVLLServiceElement method)


        	(bvll.UDPMultiplexer method)


        	(bvll._MultiplexClient method)


        	(bvll._MultiplexServer method)


        	(commandlogging.CommandLoggingClient method)


        	(netservice.NetworkServiceElement method)


        	(tcp.StreamToPacket method)


      


  

  	
      	confirmed_request_types (in module apdu)


      	ConfirmedEventNotificationRequest (class in apdu)


      	ConfirmedPrivateTransferError (class in apdu)


      	ConfirmedRequestPDU (class in apdu), [1]


      	ConfirmedRequestSequence (class in apdu)


      	connect() (bsllservice.DeviceToDeviceClientService method)

      
        	(bsllservice.ProxyClientService method)


        	(bsllservice.RouterToRouterService method)


        	(tcp.TCPClientDirector method)


      


      	connect_ack() (bsllservice.DeviceToDeviceClientService method)

      
        	(bsllservice.ProxyClientService method)


        	(bsllservice.RouterToRouterService method)


      


      	connected (bsllservice.ConnectionState attribute)


      	ConnectionState (class in bsllservice)


      	console_interrupt() (in module consolecmd)


      	ConsoleCmd (class in consolecmd)


      	consolecmd (module)


      	consolelogging (module)


      	ConsoleLogHandler() (in module consolelogging)


      	constructeddata (module)


      	context (constructeddata.Element attribute)


      	context_to_app() (primitivedata.Tag method)


      	ContextTag (class in primitivedata)


      	core (module)


      	cov_abort() (ChangeOfValueServices method)


      	cov_ack() (ChangeOfValueServices method)


      	cov_confirmation() (ChangeOfValueServices method)


      	cov_error() (ChangeOfValueServices method)


      	cov_notification() (ChangeOfValueServices method)


      	cov_reject() (ChangeOfValueServices method)


      	COVDetection (built-in class)


      	COVIncrementCriteria (built-in class)


      	CreateObjectError (class in apdu)


      	CredentialDataInputCriteria (built-in class)


      	CurrentDateProperty (built-in class)

      
        	(class in object)


      


      	currentState (analysis.Tracer attribute)


      	CurrentTimeProperty (built-in class)

      
        	(class in object)


      


  





D


  	
      	datatype (object.Property attribute)


      	Date (class in primitivedata)


      	Debug (class in comm)


      	debug_contents() (constructeddata.Any method)

      
        	(constructeddata.ArrayOf method)


        	(constructeddata.Choice method)


        	(constructeddata.Sequence method)


        	(constructeddata.SequenceOf method)


        	(debugging.DebugContents method)


        	(primitivedata.Tag method)


      


      	DebugContents (class in debugging)


      	debugging (module)


      	DebugServiceElement (class in comm)


      	decode() (apdu._APDU method)

      
        	(apdu.APCI method)


        	(apdu.APDU method)


        	(constructeddata.Any method)


        	(constructeddata.ArrayOf method)


        	(constructeddata.Choice method)


        	(constructeddata.Sequence method)


        	(constructeddata.SequenceOf method)


        	(iocb.IOChainMixIn method)


        	(npdu.DisconnectConnectionToNetwork method)


        	(npdu.EstablishConnectionToNetwork method)


        	(npdu.IAmRouterToNetwork method)


        	(npdu.ICouldBeRouterToNetwork method)


        	(npdu.InitializeRoutingTable method)


        	(npdu.InitializeRoutingTableAck method)


        	(npdu.NPCI method)


        	(npdu.NPDU method)


        	(npdu.RejectMessageToNetwork method)


        	(npdu.RouterAvailableToNetwork method)


        	(npdu.RouterBusyToNetwork method)


        	(npdu.WhoIsRouterToNetwork method)


        	(primitivedata.BitString method)


        	(primitivedata.Boolean method)


        	(primitivedata.CharacterString method)


        	(primitivedata.Date method)


        	(primitivedata.Double method)


        	(primitivedata.Enumerated method)


        	(primitivedata.Integer method)


        	(primitivedata.Null method)


        	(primitivedata.ObjectIdentifier method)


        	(primitivedata.OctetString method)


        	(primitivedata.Real method)


        	(primitivedata.Tag method)


        	(primitivedata.Time method)


        	(primitivedata.Unsigned method)


      


      	decode_address() (pdu.Address method)


      	decode_ethernet() (in module analysis)


      	decode_file() (in module analysis)


      	decode_ip() (in module analysis)


      	decode_item() (constructeddata.ArrayOf method)


  

  	
      	decode_max_apdu_response() (in module apdu)


      	decode_max_apdu_segments() (in module apdu)


      	decode_packet() (in module analysis)


      	decode_udp() (in module analysis), [1]


      	decode_vlan() (in module analysis)


      	DecodingError (class in errors)


      	default (object.Property attribute)


      	deferred() (in module core)


      	deferredFns (in module core)


      	delete_object() (app.Application method)


      	delete_peer() (bvll.BIPBBMD method)

      
        	(bvll.BTR method)


      


      	DeleteForeignDeviceTableEntry (class in bvll)


      	DeleteForeignDeviceTableEntry() (bvll.BIPBBMD method)


      	detect (module)


      	DetectionAlgorithm (class in detect)


      	DetectionMonitor (class in detect)


      	deviceIdentifier (app.DeviceInfo attribute)


      	DeviceInfo (class in app)


      	DeviceInfoCache (class in app)


      	DeviceObject (class in object)


      	DeviceToDeviceAPDU (class in bsll)


      	DeviceToDeviceClientService (class in bsllservice)


      	DeviceToDeviceServerService (class in bsllservice)


      	director (tcp.TCPClientActor attribute)

      
        	(tcp.TCPServerActor attribute)


        	(udp.UDPActor attribute)


      


      	disconnect() (tcp.TCPClientDirector method)


      	DisconnectConnectionToNetwork (class in npdu)


      	DisconnectConnectionToNetwork() (netservice.NetworkServiceElement method)


      	discoverable


      	DistributeBroadcastToNetwork (class in bvll)


      	do_AccessChallenge() (bsllservice.TCPClientMultiplexer method)


      	do_AccessRequest() (bsllservice.TCPServerMultiplexer method)


      	do_AccessResponse() (bsllservice.TCPServerMultiplexer method)


      	do_AtomicReadFileRequest() (FileServices method)


      	do_AtomicWriteFileRequest() (FileServices method)


      	do_IAmRequest() (app.Application method)

      
        	(WhoIsIAmServices method)


      


      	do_IHaveRequest() (WhoHasIHaveServices method)


      	do_ReadPropertyMultipleRequest() (ReadWritePropertyMultipleServices method)


      	do_ReadPropertyRequest() (app.Application method)

      
        	(ReadWritePropertyServices method)


      


      	do_something() (consolecmd.ConsoleCmd method)


      	do_WhoHasRequest() (WhoHasIHaveServices method)


      	do_WhoIsRequest() (app.Application method)

      
        	(WhoIsIAmServices method)


      


      	do_WritePropertyMultipleRequest() (ReadWritePropertyMultipleServices method)


      	do_WritePropertyRequest() (app.Application method)

      
        	(ReadWritePropertyServices method)


      


      	Double (class in primitivedata)


      	downstream


      	dropPercent (vlan.Network attribute)


  





E


  	
      	Echo (class in comm)


      	Element (class in constructeddata)


      	element_map (in module comm)


      	emit() (commandlogging.CommandLogging method)

      
        	(commandlogging.CommandLoggingClient method)


        	(commandlogging.CommandLoggingHandler method)


        	(commandlogging.CommandLoggingServer method)


      


      	enable_sleeping() (in module core)


      	encode() (apdu._APDU method)

      
        	(apdu.APCI method)


        	(apdu.APDU method)


        	(constructeddata.Any method)


        	(constructeddata.ArrayOf method)


        	(constructeddata.Choice method)


        	(constructeddata.Sequence method)


        	(constructeddata.SequenceOf method)


        	(iocb.IOChainMixIn method)


        	(npdu.DisconnectConnectionToNetwork method)


        	(npdu.EstablishConnectionToNetwork method)


        	(npdu.IAmRouterToNetwork method)


        	(npdu.ICouldBeRouterToNetwork method)


        	(npdu.InitializeRoutingTable method)


        	(npdu.InitializeRoutingTableAck method)


        	(npdu.NPCI method)


        	(npdu.NPDU method)


        	(npdu.RejectMessageToNetwork method)


        	(npdu.RouterAvailableToNetwork method)


        	(npdu.RouterBusyToNetwork method)


        	(npdu.WhoIsRouterToNetwork method)


        	(primitivedata.BitString method)


        	(primitivedata.Boolean method)


        	(primitivedata.CharacterString method)


        	(primitivedata.Date method)


        	(primitivedata.Double method)


        	(primitivedata.Enumerated method)


        	(primitivedata.Integer method)


        	(primitivedata.Null method)


        	(primitivedata.ObjectIdentifier method)


        	(primitivedata.OctetString method)


        	(primitivedata.Real method)


        	(primitivedata.Tag method)


        	(primitivedata.Time method)


        	(primitivedata.Unsigned method)


      


  

  	
      	encode_item() (constructeddata.ArrayOf method)


      	encode_max_apdu_response() (in module apdu)


      	encode_max_apdu_segments() (in module apdu)


      	EncodingError (class in errors)


      	Enumerated (class in primitivedata)


      	enumerations (primitivedata.Enumerated attribute)


      	Error (class in apdu)


      	error_types (in module apdu)


      	ErrorClass (class in apdu)


      	ErrorCode (class in apdu)


      	ErrorPDU (class in apdu)


      	errors (module)


      	ErrorSequence (class in apdu)


      	ErrorType (class in apdu)


      	EstablishConnectionToNetwork (class in npdu)


      	EstablishConnectionToNetwork() (netservice.NetworkServiceElement method)


      	event (module)


      	EventEnrollmentObject (class in object)


      	execute() (COVDetection method)

      
        	(detect.DetectionAlgorithm method)


      


      	
    exit

      
        	command line option


      


  





F


  	
      	FDTEntry (class in bvll)


      	FileObject (class in object)


      	FileServices (built-in class)


      	FileServicesClient (built-in class)


      	FillWindow() (appservice.SSM method)


      	filter (detect.DetectionMonitor attribute)


  

  	
      	find() (SubscriptionList method)


      	Flush() (tcp.TCPClientActor method)

      
        	(tcp.TCPServerActor method)


      


      	format() (debugging.LoggingFormatter method)


      	ForwardedNPDU (class in bvll)


      	function_debugging() (in module debugging)


      	FunctionTask() (in module task)


  





G


  	
      	
    gc

      
        	command line option


      


      	GenericCriteria (built-in class)


      	get() (comm.PDUData method)

      
        	(iocb.IOQueue method)


      


      	get_data() (comm.PDUData method)


      	get_datatype() (in module object)


      	get_default_user_info() (bsllservice.ProxyClientService method)

      
        	(bsllservice.ServiceAdapter method)


      


      	get_device_info() (app.DeviceInfoCache method)


      	get_long() (comm.PDUData method)

      
        	(primitivedata.Enumerated method)


        	(primitivedata.ObjectIdentifier method)


      


  

  	
      	get_next_task() (task.TaskManager method)


      	get_object_class() (in module object)


      	get_object_id() (app.Application method)


      	get_object_name() (app.Application method)


      	get_segment() (appservice.SSM method)


      	get_short() (comm.PDUData method)


      	get_tuple() (primitivedata.ObjectIdentifier method)


      	get_user_info() (bsllservice.ServiceAdapter method)


      	GetActor() (tcp.TCPClientDirector method)

      
        	(tcp.TCPServerDirector method)


        	(udp.UDPDirector method)


      


      	GlobalBroadcast (class in pdu)


      	group_callback() (iocb.IOGroup method)


      	GroupObject (class in object)


  





H


  	
      	handle_accept() (tcp.TCPServerDirector method)


      	handle_close() (event.WaitableEvent method)

      
        	(tcp.TCPClient method)


        	(tcp.TCPClientActor method)


        	(tcp.TCPServer method)


        	(tcp.TCPServerActor method)


        	(tcp.TCPServerDirector method)


        	(udp.UDPDirector method)


      


      	handle_connect() (tcp.TCPClient method)

      
        	(tcp.TCPServer method)


        	(udp.UDPDirector method)


      


      	handle_expt() (tcp.TCPClient method)


  

  	
      	handle_read() (event.WaitableEvent method)

      
        	(tcp.TCPClient method)


        	(tcp.TCPServer method)


        	(udp.UDPDirector method)


      


      	handle_write() (event.WaitableEvent method)

      
        	(tcp.TCPClient method)


        	(tcp.TCPServer method)


        	(udp.UDPDirector method)


      


      	handlers (commandlogging.CommandLogging attribute)


      	has_device_info() (app.DeviceInfoCache method)


      	
    help

      
        	command line option


      


  





I


  	
      	i_am() (WhoIsIAmServices method)


      	i_have() (WhoHasIHaveServices method)


      	IAmRequest (class in apdu)


      	IAmRouterToNetwork (class in npdu)


      	IAmRouterToNetwork() (netservice.NetworkServiceElement method)


      	ICouldBeRouterToNetwork (class in npdu)


      	ICouldBeRouterToNetwork() (netservice.NetworkServiceElement method)


      	identifier (object.Property attribute)


      	IdleTimeout() (tcp.TCPClientActor method)

      
        	(tcp.TCPServerActor method)


        	(udp.UDPActor method)


      


      	IHaveRequest (class in apdu)


      	in_window() (appservice.SSM method)


      	index() (constructeddata.ArrayOf method)


      	indication() (app.Application method)

      
        	(bsllservice.TCPClientMultiplexer method)


        	(bsllservice.TCPMultiplexerASE method)


        	(bsllservice.TCPServerMultiplexer method)


        	(bvll.BIPBBMD method)


        	(bvll.BIPForeign method)


        	(bvll.BIPSimple method)


        	(bvll.BTR method)


        	(bvll.BVLLServiceElement method)


        	(bvll.UDPMultiplexer method)


        	(commandlogging.CommandLoggingServer method)


        	(netservice.NetworkServiceElement method)


        	(tcp.PickleActorMixIn method)


        	(tcp.StreamToPacket method)


        	(tcp.TCPClient method)


        	(tcp.TCPClientActor method)


        	(tcp.TCPClientDirector method)


        	(tcp.TCPServer method)


        	(tcp.TCPServerActor method)


        	(tcp.TCPServerDirector method)


        	(udp.UDPActor method)


        	(udp.UDPDirector method)


        	(udp.UDPPickleActor method)


        	(vlan.Node method)


      


  

  	
      	InitializeRoutingTable (class in npdu)


      	InitializeRoutingTable() (netservice.NetworkServiceElement method)


      	InitializeRoutingTableAck (class in npdu)


      	InitializeRoutingTableAck() (netservice.NetworkServiceElement method)


      	initialSequenceNumber (appservice.SSM attribute)


      	install_task() (task._Task method)

      
        	(task.TaskManager method)


      


      	Integer (class in primitivedata)


      	invokeID (appservice.SSM attribute)


      	IOCB (class in iocb)


      	iocb (module)


      	IOChain (class in iocb)


      	IOChainMixIn (class in iocb)


      	IOController (class in iocb)


      	ioError (iocb.IOCB attribute)


      	IOGroup (class in iocb)


      	ioID (iocb.IOCB attribute)


      	IOQController (class in iocb)


      	IOQueue (class in iocb)


      	ioResponse (iocb.IOCB attribute)


      	ioState (iocb.IOCB attribute)


      	isSet() (event.WaitableEvent method)


      	iter_objects() (app.Application method)


  





K


  	
      	keylist() (primitivedata.Enumerated method)


  

  	
      	klass (constructeddata.Element attribute)


  





L


  	
      	lastSequenceNumber (appservice.SSM attribute)


      	LESToClientBroadcastNPDU (class in bsll)


      	LESToClientUnicastNPDU (class in bsll)


      	LifeSafetyPointObject (class in object)


      	LifeSafetyZoneObject (class in object)


      	LoadControlCriteria (built-in class)


      	LocalBroadcast (class in pdu)


  

  	
      	LocalDeviceObject (built-in class)

      
        	(class in object)


      


      	LocalRecordAccessFileObject (built-in class)


      	LocalStation (class in pdu)


      	LocalStreamAccessFileObject (built-in class)


      	Logging (class in debugging)


      	LoggingFormatter (class in debugging)


      	LoopObject (class in object)


  





M


  	
      	map_name() (in module object)


      	map_name_re (in module object)


      	maxApduLengthAccepted (app.DeviceInfo attribute)


      	maxNpduLength (app.DeviceInfo attribute)


      	maxSegmentsAccepted (app.DeviceInfo attribute)

      
        	(appservice.SSM attribute)


      


      	ModuleLogger() (in module debugging)


  

  	
      	monitor_filter() (in module detect)


      	multiplexer (bvll._MultiplexClient attribute)

      
        	(bvll._MultiplexServer attribute)


      


      	MultiStateInputObject (class in object)


      	MultiStateOutputObject (class in object)


      	MultiStateValueObject (class in object)


      	mutable (object.Property attribute)


  





N


  	
      	name (constructeddata.Element attribute)


      	netservice (module)


      	Network (class in vlan)


      	network (netservice.NetworkReference attribute)


      	NetworkReference (class in netservice)


      	networks (netservice.RouterReference attribute)


      	NetworkServiceAdapter (class in bsllservice)


      	NetworkServiceElement (class in netservice)


      	Next() (analysis.Tracer method)


      	Node (class in vlan)


      	nodes (vlan.Network attribute)


      	NotificationBufferReady (class in basetypes)


      	NotificationChangeOfBitstring (class in basetypes)


      	NotificationChangeOfLifeSafety (class in basetypes)


      	NotificationChangeOfState (class in basetypes)


      	NotificationChangeOfValue (class in basetypes)


      	NotificationChangeOfValueNewValue (class in basetypes)


      	NotificationClassObject (class in object)


      	NotificationCommandFailure (class in basetypes)


  

  	
      	NotificationComplexEventType (class in basetypes)


      	NotificationExtended (class in basetypes)


      	NotificationFloatingLimit (class in basetypes)


      	NotificationOutOfRange (class in basetypes)


      	NotificationUnsignedRange (class in basetypes)


      	now() (primitivedata.Date method)

      
        	(primitivedata.Time method)


      


      	NPCI (class in npdu)


      	NPDU (class in npdu)


      	npdu (module)


      	npduControl (npdu.NPCI attribute)


      	npduDADR (npdu.NPCI attribute)


      	npduHopCount (npdu.NPCI attribute)


      	npduNetMessage (npdu.NPCI attribute)


      	npduSADR (npdu.NPCI attribute)


      	npduVendorID (npdu.NPCI attribute)


      	npduVersion (npdu.NPCI attribute)


      	Null (class in primitivedata)


      	NullServiceElement (class in comm)


  





O


  	
      	obj (detect.DetectionMonitor attribute)


      	object (module)


      	object_types (in module object)


      	ObjectIdentifier (class in primitivedata)


      	ObjectIdentifierProperty (class in object)


      	ObjectType (class in primitivedata)


      	objectTypeClass (primitivedata.ObjectIdentifier attribute)


      	OctetString (class in primitivedata)


  

  	
      	OneShotDeleteTask (class in task)


      	OneShotFunction() (in module task)


      	OneShotTask (class in task)


      	OpeningTag (class in primitivedata)


      	optional (constructeddata.Element attribute)

      
        	(object.Property attribute)


      


      	OriginalBroadcastNPDU (class in bvll)


      	OriginalUnicastNPDU (class in bvll)


  





P


  	
      	Packetize() (tcp.StreamToPacket method)


      	parameter (detect.DetectionMonitor attribute)


      	PCI (class in comm)

      
        	(class in pdu)


      


      	PDU (class in comm)

      
        	(class in pdu)


      


      	pdu (module)


      	PDUData (class in comm)


      	pduData (comm.PDUData attribute)


      	pduDestination (comm.PCI attribute)


      	pduExpectingReply (pdu.PCI attribute)


      	pduNetworkPriority (pdu.PCI attribute)


      	pduSouce (comm.PCI attribute)


      	peer (tcp.TCPClientActor attribute)

      
        	(tcp.TCPServerActor attribute)


        	(udp.UDPActor attribute)


      


      	PickleActorMixIn (class in tcp)


      	primitivedata (module)


      	print_stack() (in module core)


      	process_command() (commandlogging.CommandLogging method)


      	process_io() (iocb.IOController method)

      
        	(iocb.IOQController method)


      


      	process_npdu() (bsllservice.DeviceToDeviceClientService method)

      
        	(bsllservice.DeviceToDeviceServerService method)


        	(bsllservice.ProxyServiceNetworkAdapter method)


        	(bsllservice.RouterToRouterService method)


      


  

  	
      	process_pdu() (vlan.Network method)


      	process_task() (bvll.BIPBBMD method)

      
        	(Subscription method)


        	(bvll.BIPForeign method)


        	(task.TaskManager method)


        	(task._Task method)


      


      	ProgramObject (class in object)


      	prop (detect.DetectionMonitor attribute)


      	Property (class in object)


      	property_change() (detect.DetectionMonitor method)


      	proposedWindowSize (appservice.SSM attribute)


      	proxyAdapter (bsllservice.ConnectionState attribute)


      	ProxyClientService (class in bsllservice)


      	ProxyServerService (class in bsllservice)


      	ProxyServiceNetworkAdapter (class in bsllservice)


      	ProxyToServerBroadcastNPDU (class in bsll)


      	ProxyToServerUnicastNPDU (class in bsll)


      	PulseConverterCriteria (built-in class)


      	PulseConverterObject (class in object)


      	put() (comm.PDUData method)

      
        	(iocb.IOQueue method)


      


      	put_data() (comm.PDUData method)


      	put_long() (comm.PDUData method)


      	put_short() (comm.PDUData method)


  





R


  	
      	Range (class in apdu)


      	RangeByPosition (class in apdu)


      	RangeBySequenceNumber (class in apdu)


      	RangeByTime (class in apdu)


      	read_record() (LocalRecordAccessFileObject method)


      	read_stream() (LocalStreamAccessFileObject method)


      	readable() (event.WaitableEvent method)

      
        	(tcp.TCPClient method)


        	(tcp.TCPServer method)


        	(udp.UDPDirector method)


      


      	ReadAccessResult (class in apdu)


      	ReadAccessResultElement (class in apdu)


      	ReadAccessResultElementChoice (class in apdu)


      	ReadAccessSpecification (class in apdu)


      	ReadBroadcastDistributionTable (class in bvll)


      	ReadBroadcastDistributionTableAck (class in bvll)


      	ReadForeignDeviceTable (class in bvll)


      	ReadForeignDeviceTableAck (class in bvll)


      	ReadProperty() (CurrentDateProperty method)

      
        	(CurrentTimeProperty method)


        	(object.CurrentDateProperty method)


        	(object.CurrentTimeProperty method)


        	(object.Property method)


      


      	ReadPropertyACK (class in apdu)


      	ReadPropertyMultipleACK (class in apdu)


      	ReadPropertyMultipleRequest (class in apdu)


      	ReadPropertyRequest (class in apdu)


      	ReadRangeACK (class in apdu)


      	ReadRangeRequest (class in apdu)


      	ReadWritePropertyMultipleServices (built-in class)


      	ReadWritePropertyServices (built-in class)


      	Real (class in primitivedata)


      	recurring_function() (in module task)


      	RecurringFunctionTask() (in module task)


      	RecurringTask (class in task)


      	register() (bvll.BIPForeign method)


      	register_apdu_type() (in module apdu)


      	register_complex_ack_type() (in module apdu)


      	register_confirmed_request_type() (in module apdu)


      	register_controller() (in module iocb)


      	register_error_type() (in module apdu)


      	register_object_type() (in module object)


      	register_unconfirmed_request_type() (in module apdu)


      	RegisterForeignDevice (class in bvll)


      	RegisterForeignDevice() (bvll.BIPBBMD method)


      	RejectMessageToNetwork (class in npdu)


  

  	
      	RejectMessageToNetwork() (netservice.NetworkServiceElement method)


      	RejectPDU (class in apdu)


      	release_device_info() (app.DeviceInfoCache method)


      	RemoteBroadcast (class in pdu)


      	remoteDevice (appservice.SSM attribute)


      	RemoteStation (class in pdu)


      	remove() (iocb.IOQueue method)

      
        	(SubscriptionList method)


      


      	remove_connection() (bsllservice.ProxyServerService method)

      
        	(bsllservice.RouterToRouterService method)


        	(bsllservice.ServiceAdapter method)


      


      	remove_node() (vlan.Network method)


      	RemoveActor() (tcp.TCPClientDirector method)

      
        	(tcp.TCPServerDirector method)


        	(udp.UDPDirector method)


      


      	renew_subscription() (Subscription method)


      	request() (bsllservice.TCPClientMultiplexer method)

      
        	(bsllservice.TCPServerMultiplexer method)


      


      	request_io() (iocb.IOController method)

      
        	(iocb.IOQController method)


      


      	response() (tcp.PickleActorMixIn method)

      
        	(tcp.TCPClientActor method)


        	(tcp.TCPServerActor method)


        	(udp.UDPActor method)


        	(udp.UDPPickleActor method)


      


      	restart_timer() (appservice.SSM method)


      	Result (class in bsll)

      
        	(class in bvll)


      


      	resume_task() (task._Task method)

      
        	(task.TaskManager method)


      


      	retryCount (appservice.SSM attribute)


      	router (netservice.NetworkReference attribute)


      	RouterAvailableToNetwork (class in npdu)


      	RouterAvailableToNetwork() (netservice.NetworkServiceElement method)


      	RouterBusyToNetwork (class in npdu)


      	RouterBusyToNetwork() (netservice.NetworkServiceElement method)


      	RouterReference (class in netservice)


      	RouterToRouterNPDU (class in bsll)


      	RouterToRouterService (class in bsllservice)


      	RoutingTableEntry (class in npdu)


      	rtDNET (npdu.RoutingTableEntry attribute)


      	rtPortID (npdu.RoutingTableEntry attribute)


      	rtPortInfo (npdu.RoutingTableEntry attribute)


      	run() (consolecmd.ConsoleCmd method)

      
        	(in module core)


      


      	running (in module core)


  





S


  	
      	sap_confirmation() (bvll.BIPSAP method)


      	sap_indication() (bvll.BIPSAP method)


      	ScheduleObject (class in object)


      	SegmentAckPDU (class in apdu)


      	segmentAPDU (appservice.SSM attribute)


      	segmentationSupported (app.DeviceInfo attribute)


      	segmentCount (appservice.SSM attribute)


      	segmentRetryCount (appservice.SSM attribute)


      	segmentSize (appservice.SSM attribute)


      	send_cov_notifications() (COVDetection method)


      	sentAllSegments (appservice.SSM attribute)


      	Sequence (class in constructeddata)


      	sequenceElements (constructeddata.Sequence attribute)


      	SequenceOf (class in constructeddata)


      	Server (class in comm)


      	server_map (in module comm)


      	ServerToProxyBroadcastNPDU (class in bsll)


      	ServerToProxyUnicastNPDU (class in bsll)


      	service (bsllservice.ConnectionState attribute)


      	service_confirmation() (bsllservice.DeviceToDeviceClientService method)

      
        	(bsllservice.DeviceToDeviceServerService method)


        	(bsllservice.ProxyClientService method)


        	(bsllservice.ProxyServerService method)


        	(bsllservice.ProxyServiceNetworkAdapter method)


        	(bsllservice.RouterToRouterService method)


        	(bsllservice.ServiceAdapter method)


      


      	service_map (in module comm)


      	service_request() (bsllservice.ServiceAdapter method)


      	ServiceAccessPoint (class in comm)


      	ServiceAdapter (class in bsllservice)


      	ServiceRequest (class in bsll)


      	set() (event.WaitableEvent method)

      
        	(primitivedata.Tag method)


      


  

  	
      	set_app_data() (primitivedata.Tag method)


      	set_context() (apdu._APDU method)


      	set_long() (primitivedata.ObjectIdentifier method)


      	set_segmentation_context() (appservice.SSM method)


      	set_state() (appservice.SSM method)


      	set_timeout() (iocb.IOCB method)


      	set_tuple() (primitivedata.ObjectIdentifier method)


      	SieveClientController (class in iocb)


      	SimpleAckPDU (class in apdu), [1]


      	Singleton (class in singleton)


      	singleton (module)


      	SingletonLogging (class in singleton)


      	sleeptime (in module core)


      	snork() (app.Application method)


      	SSM (class in appservice)


      	stack


      	Start() (analysis.Tracer method)


      	start_timer() (appservice.SSM method)


      	state (appservice.SSM attribute)


      	StateMachineAccessPoint (class in appservice)


      	status (netservice.NetworkReference attribute)

      
        	(netservice.RouterReference attribute)


      


      	stop() (in module core)


      	stop_timer() (appservice.SSM method)


      	StreamToPacket (class in tcp)


      	StreamToPacketSAP (class in tcp)


      	strftimestamp() (in module analysis)


      	StructuredViewObject (class in object)


      	Subscription (built-in class)


      	SubscriptionList (built-in class)


      	suspend_task() (task._Task method)

      
        	(task.TaskManager method)


      


  





T


  	
      	Tag (class in primitivedata)


      	tagClass (primitivedata.Tag attribute)


      	tagData (primitivedata.Tag attribute)


      	TagList (class in primitivedata)


      	tagList (constructeddata.Any attribute)


      	tagLVT (primitivedata.Tag attribute)


      	tagNumber (primitivedata.Tag attribute)


      	task (module)


      	TaskManager (class in task)


      	taskManager (in module core)


      	tcp (module)


      	TCPClient (class in tcp)


      	TCPClientActor (class in tcp)


      	TCPClientDirector (class in tcp)


      	TCPClientMultiplexer (class in bsllservice)


      	TCPMultiplexerASE (class in bsllservice)


  

  	
      	TCPPickleClientActor (class in tcp)


      	TCPPickleServerActor (class in tcp)


      	TCPServer (class in tcp)


      	TCPServerActor (class in tcp)


      	TCPServerDirector (class in tcp)


      	TCPServerMultiplexer (class in bsllservice)


      	Time (class in primitivedata)


      	timeout (tcp.TCPClientActor attribute)

      
        	(tcp.TCPServerActor attribute)


        	(udp.UDPActor attribute)


      


      	timer (tcp.TCPClientActor attribute)

      
        	(tcp.TCPServerActor attribute)


        	(udp.UDPActor attribute)


      


      	trace() (in module analysis)


      	Tracer (class in analysis)


      	TrendLogObject (class in object)


      	trigger() (iocb.IOCB method)


  





U


  	
      	udp (module)


      	UDPActor (class in udp)


      	UDPDirector (class in udp)


      	UDPMultiplexer (class in bvll)


      	UDPPickleActor (class in udp)


      	unbind() (detect.DetectionAlgorithm method)


      	unconfirmed_request_types (in module apdu)


      	UnconfirmedCOVNotificationRequest (class in apdu)


      	UnconfirmedEventNotificationRequest (class in apdu)


  

  	
      	UnconfirmedRequestPDU (class in apdu)


      	UnconfirmedRequestSequence (class in apdu)


      	unregister() (bvll.BIPForeign method)


      	Unsigned (class in primitivedata)


      	update() (apdu.APCI method)

      
        	(npdu.NPCI method)


      


      	update_device_info() (app.DeviceInfoCache method)


      	upstream


      	userinfo (bsllservice.ConnectionState attribute)


      	UserInformation (class in bsllservice)


  





V


  	
      	vendorID (app.DeviceInfo attribute)


  

  	
      	vlan (module)


      	VTCloseError (class in apdu)


  





W


  	
      	wait() (event.WaitableEvent method)

      
        	(iocb.IOCB method)


      


      	WaitableEvent (class in event)


      	who_has() (WhoHasIHaveServices method)


      	who_is() (WhoIsIAmServices method)


      	WhoHasIHaveServices (built-in class)


      	WhoHasLimits (class in apdu)


      	WhoHasObject (class in apdu)


      	WhoHasRequest (class in apdu)


      	WhoIsIAmServices (built-in class)


      	WhoIsRequest (class in apdu)


      	WhoIsRouterToNetwork (class in npdu)


      	WhoIsRouterToNetwork() (netservice.NetworkServiceElement method)


      	writable() (event.WaitableEvent method)

      
        	(tcp.TCPClient method)


        	(tcp.TCPServer method)


        	(udp.UDPDirector method)


      


  

  	
      	write_record() (LocalRecordAccessFileObject method)


      	write_stream() (LocalStreamAccessFileObject method)


      	WriteAccessSpecification (class in apdu)


      	WriteBroadcastDistributionTable (class in bvll)


      	WriteProperty() (CurrentDateProperty method)

      
        	(CurrentTimeProperty method)


        	(object.CurrentDateProperty method)


        	(object.CurrentTimeProperty method)


        	(object.ObjectIdentifierProperty method)


        	(object.Property method)


      


      	WritePropertyMultipleError (class in apdu)


      	WritePropertyMultipleRequest (class in apdu)


      	WritePropertyRequest (class in apdu)


  







          

      

      

    

  

  
    

    Sample 1 - Simple Application
    

    
 
  

    
      
          
            
  
Sample 1 - Simple Application

This sample application is the simplest BACpypes application that is a complete
stack.  Using an INI file it will configure a LocalDeviceObject,
create a SampleApplication instance, and run, waiting for a keyboard interrupt
or a TERM signal to quit.


Generic Application Structure

There is a common pattern to all BACpypes applications such as import statements
in a similar order, the same debugging initialization, and the same try…except
wrapper for the __main__ outer block.

Debugging and logging is brought to the application via a decorator (see later in class) and
you will need debugging.ModuleLogger:

from bacpypes.debugging import bacpypes_debugging, ModuleLogger





All BACpypes applications gather some options from the command line and use the
consolelogging.ConfigArgumentParser function for reading configuration
information:

from bacpypes.consolelogging import ConfigArgumentParser





For applications that communicate on the network, it needs the core.run()
function:

from bacpypes.core import run





Now there are usually a variety of other imports depending on what the application
wants to do.  This one is simple, it just needs to create a derived class of
app.BIPSimpleApplication and an instance of
service.device.LocalDeviceObject:

from bacpypes.app import BIPSimpleApplication
from bacpypes.service.device import LocalDeviceObject





Global variables are initialized before any other classes or functions:

# some debugging
_debug = 0
_log = ModuleLogger(globals())





Now skipping down to the main function.  Everything is wrapped in a
try..except..finally because many “real world” applications send startup and
shutdown notifications to other processes and it is important to include
the exception (or graceful conclusion) of the application along with the
notification:

#
#   __main__
#

def main():

    # code goes here...

    if _debug: _log.debug("initialization")
    if _debug: _log.debug("    - args: %r", args)

    try:
        # code goes here...

        _log.debug("initialization")
        # code goes here...

        _log.debug("running")
        # code goes here...

    except Exception as e:
        _log.exception("an error has occurred: %s", e)
    finally:
        _log.debug("finally")

if __name__ == "__main__":
    main()







Generic Initialization

These sample applications and other server applications are run on many machines
on a BACnet intranet so INI files are used for configuration parameters.


Note

When instances of applications are going to be run on virtual machines that
are dynamically created in a cloud then most of these parameters will be
gathered from the environment, like the server name and address.


  
    

    Sample 2 - Who-Is/I-Am Counter
    

    
 
  

    
      
          
            
  
Sample 2 - Who-Is/I-Am Counter

This sample application builds on the first sample by overriding the default
processing for Who-Is and I-Am requests, counting them, then continuing on
with the regular processing.

The description of this sample will be about the parts that are different from
sample 1.


Note

New in 0.15! As you’ve seen reading Capabilities, the new API allows
mixing functionnality to application more easily. In fact, by defau